Answer:
<em>The total length of the spring would be 0.65 m</em>
Explanation:
The Concept
Hooke's law evaluates the increment of spring in relation to the force acting on the body. Hooke's law states that for a spring undergoing deformation, the force applied is directly proportional to the deformation experienced by the spring. Hooke's law is represented thus;
F = k x ..................1
where F is the force applied to the spring
k is the spring constant
x is the spring stretch or extension
Step by Step Calculations
We have to obtain x before adding it to the nominal length, We make x the subject formula in equation 1;
x = F/k
but F = m x g
so, x = (m x g)/k
given that, the mass of the person m =150 kg
g is the acceleration due to gravity = 9.81 m/
k is the spring constant = 10000 N/m
then x = (9.81 m/
x 150 kg)/10000 N/m
x = 0.14715 m
the extension experienced by the spring after the compression is 0.14715 m
The total length of the spring would be;
L = 0.14715 m + 0.5 m = 0.64715
L ≈ 0.65 m
Therefore the total length of the spring would be 0.65 m
Explanation:
so sorry
don't know but please mark me as brainliest please
The length of the inclined plane is approximately 12 ft
The situation forms a right angle triangle.
<h3>Right triangle</h3>
Right triangle have one of its angle as 90 degrees.
Therefore,
The length of the inclined plane is the hypotenuse of the triangle. The length of the inclined plane can be found using trigonometric ratios.
height = 4 ft
angle(∅) = 19.45°
sin 19.45 = 4 / h
h = 4 / 0.33298412235
h = 12.0125847796
h = 12 ft
Therefore, the length of the inclined plane is approximately 12 ft
learn more on inclined plane:brainly.com/question/14163589?referrer=searchResults
The energy conservation and trigonometry we can find the results for the questions about the movement of the acrobat are;
a) The maximum speed is v = 4.89 m / s
b) The maximum height is h = 1.22 m
The energy conservation is one of the most fundamental principles of physics, stable that if there are no friction forces the mechanistic energy remains constant. Mechanical energy is the sum of the kinetic energy plus the potential energies.
Em = K + U
Let's write the energy in two points.
Starting point. Highest part of the oscillation
Em₀ = U = m g h
Final point. Lower part of the movement
= K = ½ m v²
Energy is conserved.
Emo =
m g h = ½ m v²
v² = 2 gh
Let's use trigonometry to find the height, see attached.
h = L - L cos θ
h = L (1- cos θ)
They indicate that the initial angle is tea = 48º and the length is L = 3.7 m, let's calculate.
h = 3.7 (1- cos 48)
h = 1.22 m
this is the maximum height of the movement.
Let's calculate the velocity.
v = 4.89 m / s
In conclusion using the conservation of energy and trigonometry we can find the results for the questions about the movement of the acrobat are;
a) The maximum speed is v = 4.89 m / s
b) The maximum height is h = 1.22 m
Learn more here: brainly.com/question/13010190
Answer:

Given:
Mass of the polar bear (m) = 6.8 kg
Speed of the polar bear (v) = 5.0 m/s
To Find:
Kinetic energy of the polar bear (KE)
Explanation:
Formula:

Substituting values of m & v in the equation:





Kinetic energy of the polar bear (KE) = 23002.1 J