Note that x² + 2x + 3 = x² + x + 3 + x. So your integrand can be written as
<span>(x² + x + 3 + x)/(x² + x + 3) = 1 + x/(x² + x + 3). </span>
<span>Next, complete the square. </span>
<span>x² + x + 3 = x² + x + 1/4 + 11/4 = (x + 1/2)² + (√(11)/2)² </span>
<span>Also, for the x in the numerator </span>
<span>x = x + 1/2 - 1/2. </span>
<span>So </span>
<span>(x² + 2x + 3)/(x² + x + 3) = 1 + (x + 1/2)/[(x + 1/2)² + (√(11)/2)²] - 1/2/[(x + 1/2)² + (√(11)/2)²]. </span>
<span>Integrate term by term to get </span>
<span>∫ (x² + 2x + 3)/(x² + x + 3) dx = x + (1/2) ln(x² + x + 3) - (1/√(11)) arctan(2(x + 1/2)/√(11)) + C </span>
<span>b) Use the fact that ln(x) = 2 ln√(x). Then put u = √(x), du = 1/[2√(x)] dx. </span>
<span>∫ ln(x)/√(x) dx = 4 ∫ ln u du = 4 u ln(u) - u + C = 4√(x) ln√(x) - √(x) + C </span>
<span>= 2 √(x) ln(x) - √(x) + C. </span>
<span>c) There are different approaches to this. One is to multiply and divide by e^x, then use u = e^x. </span>
<span>∫ 1/(e^(-x) + e^x) dx = ∫ e^x/(1 + e^(2x)) dx = ∫ du/(1 + u²) = arctan(u) + C </span>
<span>= arctan(e^x) + C.</span>
He bought last year and year later total is $104.3
Each share he sold 62.80 with tax is 0.03
62.80x1.03= $64.684 for each share
So there are 40 shares
64.684 x 40= $2587.36
<h2><u><em>
If you rather have the link to get this info lmk!!</em></u></h2>
Example: f(x) = 2x+3 and g(x) = x2
"x" is just a placeholder. To avoid confusion let's just call it "input":
f(input) = 2(input)+3
g(input) = (input)2
Let's start:
(g º f)(x) = g(f(x))
First we apply f, then apply g to that result:
Function Composition
- (g º f)(x) = (2x+3)2
What if we reverse the order of f and g?
(f º g)(x) = f(g(x))
First we apply g, then apply f to that result:
Function Composition
- (f º g)(x) = 2x2+3
We get a different result! When we reverse the order the result is rarely the same. So be careful which function comes first.
<h2 />