Answer:
C is correct. If the scale factor is greater than 1, the image is an enlargement. The segment UT could be an enlargement of the segment ST.
Step-by-step explanation:
A. If > 1, then the image of could be .
B. If 0 < < 1, then the image of could be . ( If the scale factor is between 0 and 1, the image is a reduction )
C. If > 1, then the image of could be .
D.If = 2, then the image of is itself.
A is not correct. If the scale factor is between 0 and 1, the image is a reduction.
B is not correct. If the scale factor is between 0 and 1, the image is a reduction.
C is correct. If the scale factor is greater than 1, the image is an enlargement.
D is not correct. If the scale factor is 1, the figure and the image are congruent.
Answer:
The correct option is 1. Fiona's first step is isolating constant 1.
Step-by-step explanation:
I took it on EDG
Answer:
x=5.333
y=3
Step-by-step explanation:
given, y=5-2............(1)
1-3x+y=-12...............(2)
y=5-2=3
put y=3 in equ (2)
1-3x+3=-12
1+3+12=3x
3x=16
x=
x=5.333
hence, x=5.333
y=3 answer
Answer:
GCF(330, 75, 450, 225) = 15
Steps:
Prime factorization of the numbers:
330 = 2 × 3 × 5 × 11
75 = 3 × 5 × 5
450 = 2 × 3 × 3 × 5 × 5
225 = 3 × 3 × 5 × 5
GCF(330, 75, 450, 225)
= 3 × 5
= 15
Answer:
x = 3
x = (-1)/2
x = 13/4
Step-by-step explanation:
Solve for x:
(2 x)/3 + 15 = 17
Put each term in (2 x)/3 + 15 over the common denominator 3: (2 x)/3 + 15 = (2 x)/3 + 45/3:
(2 x)/3 + 45/3 = 17
(2 x)/3 + 45/3 = (2 x + 45)/3:
1/3 (2 x + 45) = 17
Multiply both sides of (2 x + 45)/3 = 17 by 3:
(3 (2 x + 45))/3 = 3×17
(3 (2 x + 45))/3 = 3/3×(2 x + 45) = 2 x + 45:
2 x + 45 = 3×17
3×17 = 51:
2 x + 45 = 51
Subtract 45 from both sides:
2 x + (45 - 45) = 51 - 45
45 - 45 = 0:
2 x = 51 - 45
51 - 45 = 6:
2 x = 6
Divide both sides of 2 x = 6 by 2:
(2 x)/2 = 6/2
2/2 = 1:
x = 6/2
The gcd of 6 and 2 is 2, so 6/2 = (2×3)/(2×1) = 2/2×3 = 3:
Answer: x = 3
______________________________________________________
Solve for x:
3 x - x + 8 = 7
Grouping like terms, 3 x - x + 8 = (3 x - x) + 8:
(3 x - x) + 8 = 7
3 x - x = 2 x:
2 x + 8 = 7
Subtract 8 from both sides:
2 x + (8 - 8) = 7 - 8
8 - 8 = 0:
2 x = 7 - 8
7 - 8 = -1:
2 x = -1
Divide both sides of 2 x = -1 by 2:
(2 x)/2 = (-1)/2
2/2 = 1:
Answer: x = (-1)/2
_______________________________________
Solve for x:
4 (2 x - 6) = 2
Divide both sides of 4 (2 x - 6) = 2 by 4:
(4 (2 x - 6))/4 = 2/4
4/4 = 1:
2 x - 6 = 2/4
The gcd of 2 and 4 is 2, so 2/4 = (2×1)/(2×2) = 2/2×1/2 = 1/2:
2 x - 6 = 1/2
Add 6 to both sides:
2 x + (6 - 6) = 1/2 + 6
6 - 6 = 0:
2 x = 1/2 + 6
Put 1/2 + 6 over the common denominator 2. 1/2 + 6 = 1/2 + (2×6)/2:
2 x = 1/2 + (2×6)/2
2×6 = 12:
2 x = 1/2 + 12/2
1/2 + 12/2 = (1 + 12)/2:
2 x = (1 + 12)/2
1 + 12 = 13:
2 x = 13/2
Divide both sides by 2:
x = (13/2)/2
2×2 = 4:
Answer: x = 13/4