Answer:
Exolaiend in explanation section
Explanation:
First of all, the automatic hammer is used to drive nails into tight spaces where where we can't get a sufficient striking force if we are to use a normal regular hammer in driving the nail.
So the nail to be driven is lifted out of rest(it's position). The energy here is gravitational potential energy.
Now, when it is driven into the tight spaces, the gravitational energy would be converted to kinetic energy due to the motion and speed involved.
Answer:
2.1 × 10⁻¹ M
2.0 × 10⁻¹ m
Explanation:
Molarity
The molar mass of aniline (solute) is 93.13 g/mol. The moles corresponding to 3.9 g are:
3.9 g × (1 mol/93.13 g) = 0.042 mol
The volume of the solution is 200 mL (0.200 L). The molarity of aniline is:
M = 0.042 mol/0.200 L = 0.21 M = 2.1 × 10⁻¹ M
Molality
The moles of solute are 0.042 mol.
The density of the solvent is 1.05 g/mL. The mass corresponding to 200 mL is:
200 mL × 1.05 g/mL = 210 g = 0.210 kg
The molality of aniline is:
m = 0.042 mol/0.210 kg = 0.20 m = 2.0 × 10⁻¹ m
They are gases at room temperature
Hope this helps:)
there's no question on here
Answer:
potential energy
Explanation:
energy which is linked with the position of the object is called as potential energy. any object possessing energy due to its position is potential energy. example is holding a basketball up in to the air at a certain height so that it will have a gravitational pull towards earth surface. this gravitation pull is called as potential energy.