The formula for finding the volume is Length x Width x Height. Multiply the three numbers and show your work
1. The molar mass of Fe2(CO3)3 is 291.72 g/mol. This means that 45.6 g is equivalent to 0.156 mol. Dividing by the 0.167 L of water gives a solution of 0.936 M.
2. Multiplying (0.672 M)(0.025 L) = 0.0168 mol. The molar mass of Ni(OH)2 is 92.71 g/mol, so multiplying by 0.0168 mol = 1.56 grams. Therefore you would need to dissolved 1.56 g of Ni(OH)2 into 25 mL of water.
3. Fe2(CO3)3 + Ni(OH)2 --> Fe(OH)3 + NiCO3Balancing: Fe2(CO3)3 + 3Ni(OH)2 --> 2Fe(OH)3 + 3NiCO3The reaction quotient is:[Fe(OH)3]^2 * [NiCO3]^3 / [Fe2(CO3)3][Ni(OH)2]^3= (0.05)^2 * (1.45)^3 / (0.936)(0.672)^3= 0.0268Since this is < 1, it implies that the reactants are favored at equilibrium.
The fomula is NH4 (1+)
There are only two elements N and H.
As per oxidation state rules, the most electronegative element will have a negative oxidation state and the other element will have a positive oxidation state.
N is more electronative than H, so H will have a positive oxidation state and nitrogen will have a negative oxidation state.
You can also use the rule that states the hydrogen mostly has 1+ oxidation state,except when it is bonded to metals.
In conclusion the oxidation state of H in NH4 (1+) is 1+.
Now you must know that the sum of the oxidations states equals the charge of the ion, which in this case is 1+.
That implies that 4* (1+) + x = 1+
=> x = (1+) - 4(+) = 3-
Answer: the oxidation state of N is 3-, that is the option b.
Answer: The energy transferred is known as kinetic energy, and it depends on the mass and speed achieved.
It would be most similar to neon. it wouldn’t be sulfur because that’s in the same group as oxygen and has the same number of electrons. and carbon has less than that so the only one that makes sense is neon