Answer:

Explanation:
the half life of the given circuit is given by

where [/tex]\tau = RC[/tex]

Given 
resistance in the circuit is 40 ohm and to extend the half cycle we added new resister of 48 ohm. the net resitance is 40+48 = 88 ohms
now the new half life is

Divide equation 2 by 1


putting all value we get new half life


Answer:
1. James will attack by generating a random private key XD and a corresponding public key YD.
2. Jane transmit YA to another person called Alex.
3. James intercept YA and transmit YD to jane.
4. Jane receive YD and calculate K1
At this point james and jane thinks they share a secret key but instead james has a secret key k1 to Jane and k2 to alex.
5. Alex transmit another key XA to alex for example.
6. James intercept and calculate k2 and vice versa.
Answer:
1. The magnetic flux line form a closed loop.
2. The magnetic flux line repel each other.
3. The magnetic flux line never intersect.
Answer:
D) AND gate.
Explanation:
Given that:
A certain printer requires that all of the following conditions be satisfied before it will send a HIGH to la microprocessor acknowledging that it is ready to print
These conditions are:
1. The printer's electronic circuits must be energized.
2. Paper must be loaded and ready to advance.
3. The printer must be "on line" with the microprocessor.
Now; if these conditions are met the logic gate produces a HIGH output indicating readiness to print.
The objective here is to determine the basic logic gate used in this circuit.
Now;
For NOR gate;
NOR gate gives HIGH only when all the inputs are low. but the question states it that "a HIGH is generated and applied to a 3-input logic gate". This already falsify NOR gate to be the right answer.
For NOT gate.
NOT gate operates with only one input and one output device but here; we are dealing with 3-input logic gate.
Similarly, OR gate gives output as a high if any one of the input signals is high but we need "a HIGH that is generated and applied to a 3-input logic gate".
Finally, AND gate output is HIGH only when all the input signal is HIGH and vice versa, i.e AND gate output is LOW only when all the input signal is LOW. So AND gate satisfies the given criteria that; all the three conditions must be true for the final signal to be HIGH.
Scientific notation is another way to write a number. In scientific notation, the letter E is used to mean "10 to the power of." For example, 1.314E+1 means 1.314 * 101 which is 13.14 . Scientific notation is merely a format used for input and output.