1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scilla [17]
3 years ago
5

The screw of shaft straightener exerts a load of 30 as shown in Figure . The screw is square threaded of outside diameter 75 mm

and 6 mm pitch.
force required at the rim of a 300mm diameter hand wheel, if there is a collar
bearing of 50 mm mean diameter provided in the arrangement to exert axial
load. Assume the coefficient of friction for the collar as 0.2.

Engineering
1 answer:
kykrilka [37]3 years ago
4 0

Answer:

See calculation below

Explanation:

Given:

W = 30 kN = 30x10³ N

d = 75 mm

p = 6 mm

D = 300 mm

μ = tan Φ = 0.2

<u><em>1. Force required at the rim of handwheel </em></u>

Let P₁ = Force required at the rim of handwheel

Inner diameter or core diameter of the screw = dc = do - p = 75 - 6 = 69 mm

Mean diameter of screw:    *d = \frac{do + dc}{2} = (75 + 69) / 2 = 72 mm

and

tan α = p / πd  =  6 / (π x 72)  =  0.0265

∴ Torque required to overcome friction at he threads is  T = P x d/2

T = W tan (α + Ф) d/2

T =  W(\frac{tan \alpha + tan \theta}{1 - tan \alpha + tan \theta } ) * \frac{d}{2}

T = 30x10³ * ((0.0265 + 0.2) / (1 - 0.0265 x 0.2)) x 72/2

T = 245,400 N-mm

We know that the torque required at the rim of handwheel (T)

245,400 = P1 x D/2 = P1 x (300/2) = 150 P1

P1 = 245,400 / 150

P1 = 1636 N

<u><em>2. Maximum compressive stress in the screw</em></u>

                         30x10³

Qc = W / Ac = -------------- = 8.02 N/mm²

                      π/4 * 69²

Qc = 8.02 MPa

Bearing pressure on the threads (we know that number of threads in contact with the nut)

n = height of nut / pitch of threads = 150 / 6 = 25 threads

thickness of threads, t = p/2 = 6/2 = 3 mm

bearing pressure on the threads = Pb = W / (π d t n)

Pb = 30 x 10³ / (π * 72 * 3 * 25)

Pb = 1.77 N/mm²

Max shear stress on the threads = τ = 16 T / (π dc³)

τ = (16 * 245,400) / ( π * 69³ )

τ = 3.8 M/mm²

*the mean dia of the screw (d) = d = do - p/2 = 75 - 6/2 = 72

∴max shear stress in the threads τmax = 1/2 * sqrt(8.02² + (4 * 3.8²))

τmax = 5.5 Mpa

<u><em>3. efficiency of the straightener</em></u>

<u><em></em></u>

To = W tan α x d/2 = 30x10³ * 0.0265 * 72/2 = 28,620 N-mm

∴Efficiency of the straightener is η =  To / T = 28,620 / 245,400

η = 0.116 or 11.6%

You might be interested in
Which process is a from of mechanical weathering
alekssr [168]
Ice. The formation of ice in the myriad of tiny cracks and joints in a rock's surface slowly pries it apart over thousands of years. Frost wedging results when the formation of ice widens and deepens the cracks, breaking off pieces and slabs. Frost wedging is most effective in those climates that have many cycles of freezing and thawing. Frost heaving is the process by which rocks are lifted vertically from soil by the formation of ice. Water freezes first under rock fragments and boulders in the soil; the repeated freezing and thawing of ice gradually pushes the rocks to the surface.
7 0
3 years ago
The beam is supported by a pin at A and a roller at B which has negligible weight and a radius of 15 mm. If the coefficient of s
Anettt [7]

Answer:

33.4

Explanation:

Step 1:

\sumMo=0 (moment about the origin)

Fb(15)-Fc(15)=0

Fb=Fc

Step 2:

\sumFx=0

-Fb-Fccos\theta+Ncsin\theta=0

Fc=0.3Nc=Fb

-0.3Nc-0.3Nccos\theta+Ncsin\theta=0

(-0.3-cos\theta+sin\theta)Nc=0----(1)

\sumFy=0

Nccos\theta+Fcsin\theta-Nb=0

Nccos\theta+0.3Ncsin\theta-Nc=0

Nc[cos\theta+0.3sin\theta-1]=0--------(2)

Solving eq (1) and eq (2)

\theta=33.4

Step 3:

As the roller is a two force member

2(90-\phi)+\theta=180

\phi=\theta/2

\phi=Tan(\muN/N)-1

\phi=16.7

\theta=2x16.7=33.4

5 0
2 years ago
What have you learned about designing solutions? How does this apply to engineering? Think of some engineering solutions that st
Andrew [12]

Answer:

In engineering design, failure is expected. It helps you find the best solutions before implementing them in the “real world”. Having a prototype fail is a GOOD thing, because that means you have learned something new about the problem and potential solutions.

Explanation:

4 0
2 years ago
After the load impedance has been transformed through the ideal transformer, its impedance is: + . Enter the real part in the fi
frozen [14]

Answer:

Ig =7.2 +j9.599

Explanation: Check the attachment

6 0
3 years ago
I'm bored. I want to talk to you humans! weird. STUPID QUARANTINE!!! So. What are yall up to?
kiruha [24]

Answer:

nothing much what class r u in

3 0
3 years ago
Other questions:
  • Based in bonding theory, explain why heat capacity increases when you consider metals, ceramics and polymers.
    14·1 answer
  • Alberto's mom is taking a splinter out of his hand with a pair of tweezers. The tweezers are 3 inches long. She is applying .25
    12·2 answers
  • Pennfoster Trades Safety test. Would appreciate the help. Thank you in advance. Check the screenshots below for the questions I'
    8·1 answer
  • Buying shop supplies from the shop owner to work on your own car at home is an ethical practice.
    14·1 answer
  • Which statement describes a possible limitation on a experimental design? A. Collecting samples to analyze is expensive B. The e
    6·2 answers
  • What are the major types of stone used in construction? How do their properties differ? What sequence of operations would be use
    10·1 answer
  • Practice finding the volume of a sphere.
    10·2 answers
  • HELP ASSAPPP
    15·1 answer
  • Whose responsibility is it to provide direction on correct ladder usage?<br> select the best option.
    8·1 answer
  • According to mcclelland human motivation theory, individuals primarily motivated by achievement performance to work in teams
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!