Answer:
E = 2940 J
Explanation:
It is given that,
Mass, m = 12 kg
Position at which the object is placed, h = 25 m
We need to find the potential energy of the mass. It is given by the formula as follows :
E = mgh
g is acceleration due to gravity

So, the potential energy of the mass is 2940 J.
Answer:
Yes, the flow is turbulent.
Explanation:
Reynolds number gives the nature of flow. If he Reynolds number is less than 2000 then the flow is laminar else turbulent.
Given:
Diameter of pipe is 10mm.
Velocity of the pipe is 1m/s.
Temperature of water is 200°C.
The kinematic viscosity at temperature 200°C is
m2/s.
Calculation:
Step1
Expression for Reynolds number is given as follows:

Here, v is velocity,
is kinematic viscosity, d is diameter and Re is Reynolds number.
Substitute the values in the above equation as follows:


Re=64226.07579
Thus, the Reynolds number is 64226.07579. This is greater than 2000.
Hence, the given flow is turbulent flow.
Explanation:
150 divide by 150 and that how you do the is you what to divide together 15/ 150 you welcome have a good day is you need something else
Answer:
component of acceleration are a = 3.37 m/s² and ar = 22.74 m/s²
magnitude of acceleration is 22.98 m/s²
Explanation:
given data
velocity = 10 m/s
initial time to = 0
distance s = 400 m
time t = 14 s
to find out
components and magnitude of acceleration after the car has travelled 200 m
solution
first we find the radius of circular track that is
we know distance S = 2πR
400 = 2πR
R = 63.66 m
and tangential acceleration is
S = ut + 0.5 ×at²
here u is initial speed and t is time and S is distance
400 = 10 × 14 + 0.5 ×a (14)²
a = 3.37 m/s²
and here tangential acceleration is constant
so velocity at distance 200 m
v² - u² = 2 a S
v² = 10² + 2 ( 3.37) 200
v = 38.05 m/s
so radial acceleration at distance 200 m
ar = 
ar = 
ar = 22.74 m/s²
so magnitude of total acceleration is
A = 
A = 
A = 22.98 m/s²
so magnitude of acceleration is 22.98 m/s²
Answer:
Explanation:
The explanation is given in the picture that is shown below