°C = (5/9) · (°F-32)
The "wet" thermometer is the upper one ... you can see the wet cloth wrapped around the bulb at the end. It's reading 70° F.
°C = (5/9) · (38) = 21.1° C
The "dry" thermometer is the lower one. It's reading 80° F.
°C = (5/9) · (48) = 26.7° C
So it looks like choice-A is your answer.
0.120L + 2.345L = 2.465L = 4 significant figures in the answer
Answer:
B) t = 1.83 [s]
A) y = 16.51 [m]
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity = 0
Vo = initial velocity = 18 [m/s]
g = gravity acceleration = 9.81 [m/s²]
t = time [s]
Note: the negative sign in the above equation means that the acceleration of gravity is acting in the opposite direction to the motion.
A) The maximum height is reached when the final velocity of the ball is zero.
0 = 18 - (9.81*t)
9.81*t = 18
t = 18/9.81
t = 1.83 [s], we found the answer for B.
Now using the following equation.

where:
y = elevation [m]
Yo = initial elevation = 0
y = 18*(1.83) - 0.5*9.81*(1.83)²
y = 16.51 [m]
Answer:
(a) 8.362 rad/sec
(b) 6.815 m/sec
(c) 9.446 
(d) 396.22 revolution
Explanation:
We have given that diameter d = 1.63 m
So radius 
Angular speed N = 79.9 rev/min
(a) We know that angular speed in radian per sec

(b) We know that linear speed is given by

(c) We have given final angular velocity 
And 
Time t = 63 sec
Angular acceleration is given by 
(d) Change in angle is given by
