Answer:
not clear pic...but it's definitely not A)
Answer:
B. The presence of an unbalanced force(e.g friction) causes a moving object to stop.
Explanation:
As the friction is that force that can stop the sled upon reaching the levelled surface so the option b is correct.
Answer:
Here's what I got:
Let's assume that N and E are + directions while S and W are - directions.
Wind is blowing from SW; thus, it is blowing towards NE (or at 45 deg N of E).
Dividing the wind's speed into components:y-component: +70.71 km/h; x-component: +70.71 km/h
Dividing the airplane's speed into components:y-component: -600 km/h; x-component: 0 km/h
Adding the components to get the resulting components:y-component: -529.29 km/h; x-component: +70.71
Using the Pythagorean Theorem to find the resulting speed:v^2 = y^2 + x^2 so v = 533.99 km/h
To find the angle of direction, use arctan (y/x):arctan (529.29/70.71) = 82.39 deg
ANSWER: velocity = 533.99 km/h at 82.39 deg S of E
Explanation:
P=I^2 *R
600 =5.0^2 *R
R=24
Answer: 24 ohms
I hope it’s correcttttttt...
Answer:
A constant value everywhere in the universe.
Explanation:
The speed of light in a vacuum is a constant value. It is not affected by change in frequency or wavelength of the light.
Mathematically the speed of light is given as:
c = λf
where λ = wavelength and f - frequency
The speed of light is the constant of proportionality between frequency and wavelength. In order words, wavelength and frequency are inversely proportional. As the wavelength increases, frequency decreases and vice versa.
While the change in wavelength and frequency of light affect the energy of the light, its speed is a constant value as long as the medium is a vacuum.
The speed of light is also not dependent on the manner with which the light wave is moving.