Answer:
the answer is C
Explanation:
we know this because if you compare the graphs and look at the direction. it isn't always in the explanation or the few sentences they gave you at the top. also, look at the waves, you can see in Davids drawing that it is directly straight up, A and B do not represent that. A isn't even a valid answer. Notice also in A that the arrow is going in the completely different direction than in Davids drawing. B is also going a different direction even though it is only turned a little bit although if it was straight up like Davids drawing then it would most likely be a correct answer. C does have one arrow going a different direction but look at how it has two, showing in which if the waves were to turn then the arrow is still valid
Given the distance traveled and time elapsed, the average speed of the train is approximately 26.944m/s.
<h3>What is the average speed of the train?</h3>
Speed is simply referred to as distance traveled per unit time.
Mathematically, Speed = Distance ÷ time.
Given the data in the question;
- Distance traveled = 221miles
- Elapsed time = 3 hours and 40 minutes
First we convert miles to meters and Hours minutes to seconds.
221 miles = ( 221 × 1609.344 )m = 355665.024 meters
3 hours and 40 minutes = ( 3×60×60)s + ( 40×60)s
= 10800s + 2400s
= 13200s
Now, determine the average speed.
Speed = Distance ÷ time
Speed = 355665.024m / 13200s
Speed = 26.944m/s
Given the distance traveled and time elapsed, the average speed of the train is approximately 26.944m/s.
Learn more about speed here: brainly.com/question/7359669
#SPJ1
A mechanical wave<span> requires an initial energy input. Once this initial energy is added, the </span>wave travels through<span> the medium until all its energy is transferred.</span>
Answer:
Some of the frequency that cannot be produced by the string includes 400Hz, 500Hz 650Hz etc...
Explanation:
Harmonics in strings are defined as the integral multiples of its fundamental frequency. This multiples are in arithmetic progression.
For example if Fo is the fundamental frequency of the string, the harmonics will be 2fo, 3fo, 4fo, 5fo... etc
If the string produces a fundamental frequency of 150Hz, some of the harmonics produced by the string will be 300Hz, 450Hz, 600Hz, 750Hz... etc
Some of the harmonics that cannot be produced include 400Hz, 500Hz 650Hz etc...
Explanation:
<em>Are</em><em> </em><em>the</em><em> </em><em>compounds</em><em> </em><em>formed</em><em> </em><em>by</em><em> </em><em>the</em><em> </em><em>ionic</em><em> </em><em>bonding</em><em> </em><em>or</em><em> </em><em>electronic</em><em> </em><em>bonding</em><em>.</em><em> </em><em>They</em><em> </em><em>are</em><em> </em><em>formed</em><em> </em><em>by</em><em> </em><em>transferring</em><em> </em><em>the</em><em> </em><em>electron</em><em> </em><em>form</em><em> </em><em>one</em><em> </em><em>element's</em><em> </em><em>valance</em><em> </em><em>shell</em><em> </em><em>to</em><em> </em><em>other</em><em> </em><em>element's</em><em> </em><em>shell</em><em>.</em>
<em><u>i</u></em><em><u> </u></em><em><u>hope</u></em><em><u> </u></em><em><u>it helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>