Answer
given,
given,
small cube side = 10 cm
larger cube side = 12 cm
density of steel = 7 g/cm³
density of aluminium = 2.7 g/cm³
density of the water (ρ₁)= 1 g/cm³
Cube A and B made of steel
buoyant force of Cube A
B₁ = ρ₁ V g = 1 x 10 x 10 x 10 x g= 1000 g
for cube B
B₂ = ρ₁ V g = 1 x 12 x 12 x 12 x g= 1728 g
buoyant force of Cube C
B₃ = ρ₁ V g = 1 x 10 x 10 x 10 x g= 1000 g
for cube D
B₄ = ρ₁ V g = 1 x 12 x 12 x 12 x g= 1728 g
buoyant force acting on the cube depends on the density of the fluid
hence,
B₂ = B₄ > B₁ = B₃
Answer:
q = 0.036 C
Explanation:
Given that,
Current passes through a defibrillator, I = 18 A
Time, t = 2 ms
We need to find the charge moved during this time. We know that,
Electric current = charge/time

Put all the values,

So, 0.036 C of charge moves during this time.
Franklin must not drive through a flood for there may
no road at all under the water, unless he is familiar with the road and the
flowing water is below one foot.
Moreover, if negotiating a flooded section of
road, he must drive in the middle where the water will be at its shallowest and
he must not drive through water against approaching vehicle to consider other
drivers.
Answer:
Force of friction is (-30 N).
Explanation:
The force applied on the box across the floor is 30 N.
The force of gravity is (-8 N) and the the normal force is 8 N.
It is based on Newton's third law of motion. Newton's third law of motion states that the force acting on object 1 to object 2 is equal in magnitude of the force from object 2 to 1 but in opposite direction.
Here there is force of 30 N is applied in horizontal direction. The frictional force act in opposite direction. So, the force of friction is -30 N so that box across the floor.