1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natali5045456 [20]
3 years ago
11

Aconstant current of 3 Afor 4 hours is required to charge an automotive battery. If the terminal voltage is V, where t is in hou

rs, (a) how much charge is transported as a result of the charging? (b) how much energy is expended? (c) how much does the charging cost? Assume electricity costs 9 cents/kWh.
Physics
1 answer:
kirza4 [7]3 years ago
4 0

Answer:

(a) 43.2 kC

(b) 0.012V kWh

(c) 0.108V cents

Explanation:

<u>Given:</u>

  • i = current flow = 3 A
  • t = time interval for which the current flow = 4\ h = 4\times 3600\ s = 14400\ s
  • V = terminal voltage of the battery
  • R = rate of energy = 9 cents/kWh

<u>Assume:</u>

  • Q = charge transported as a result of charging
  • E = energy expended
  • C = cost of charging

Part (a):

We know that the charge flow rate is the electric current flow through a wire.

\therefore i = \dfrac{Q}{t}\\\Rightarrow Q =it\\\Rightarrow Q = 3\times 14400\\\Rightarrow Q = 43200\ C\\\Rightarrow Q = 43.200\ kC\\

Hence, 43.2 kC of charge is transported as a result of charging.

Part (b):

We know the electrical energy dissipated due to current flow across a voltage drop for a time interval is given by:

E = Vit\\\Rightarrow E = V\times 3\times 4\\\Rightarrow E = 12V\ Wh\\\Rightarrow E = 0.012V\ kWh\\

Hence, 0.012V kWh is expended in charging the battery.

Part (c):

We know that the energy cost is equal to the product of energy expended and the rate of energy.

\therefore \textrm{Cost}=\textrm{Energy}\times \textrm{Rate}\\\Rightarrow C = ER\\\Rightarrow C = 0.012V\times 9\\\Rightarrow C =0.108V\ cents

Hence, 0.108V cents is the charging cost of the battery.

You might be interested in
Define limitations in the operation conditions of a pn junction<br>​
suter [353]

Answer:

Such limitations are given below.

Explanation:

  • Each pn junction provides limited measurements of maximum forwarding current, highest possible inversion voltage as well as the maximum output level.
  • If controlled within certain adsorption conditions, the pn junction could very well offer satisfying performance.
  • In connector operation, the maximum inversion voltage seems to be of significant importance.

6 0
3 years ago
AYOO I NEED HELP plz
oksano4ka [1.4K]

Answer:

1D

2C

3C

4C

5D

6D

7D

8D

9B

Explanation:

better give me points X﹏X

4 0
3 years ago
Read 2 more answers
A body falls from the top of the tower and during the last second of its fall it fall through 23mvfind height of tower.
DanielleElmas [232]

Answer:

39.7 m

Explanation:

First, we conside only the last second of fall of the body. We can apply the following suvat equation:

s=ut+\frac{1}{2}at^2

where, taking downward as positive direction:

s = 23 m is the displacement of the body

t = 1 s is the time interval considered

a=g=9.8 m/s^2 is the acceleration

u is the velocity of the body at the beginning of that second

Solving for u, we find:

ut=s-\frac{1}{2}at^2\\u=\frac{s}{t}-\frac{1}{2}at=\frac{23}{1}-\frac{1}{2}(9.8)(1)=18.1 m/s

Now we can call this velocity that we found v,

v = 18 m/s

And we can now consider the first part of the fall, where we can apply the following suvat equation:

v^2-u^2 = 2as'

where

v = 18 m/s

u = 0 (the body falls from rest)

s' is the displacement of the body before the last second

Solving for s',

s'=\frac{v^2-u^2}{2a}=\frac{18.1^2-0}{2(9.8)}=16.7 m

Therefore, the total heigth of the building is the sum of s and s':

h = s + s' = 23 m + 16.7 m = 39.7 m

7 0
3 years ago
If a plane is flying level at 910 km/h and the banking angle is not to exceed 50 ∘, what's the minimum curvature radius for the
hoa [83]

Answer:

5.5 km

Explanation:

First, we convert the distance from km/h to m/s

910 * 1000/3600

= 252.78 m/s

Now, we use the formula v²/r = gtanθ to get our needed radius

making r the subject of the formula, we have

r = v²/gtanθ, where

r = radius of curvature needed

g = acceleration due to gravity

θ = angle of banking

r = 252.78² / (9.8 * tan 50)

r = 63897.73 / (9.8 * 1.19)

r = 63897.73 / 11.662

r = 5479 m or 5.5 km

Thus, we conclude that the minimum curvature radius needed for the turn is 5.5 km

4 0
3 years ago
A block of mass, m, sits on the ground. A student pulls up on
kakasveta [241]

Answer a

Explanation: a

3 0
3 years ago
Other questions:
  • Which if these events happens first in earths polar regions
    9·1 answer
  • A proton is located at &lt;3 x 10^-10&gt; m. What is r, the vector from the origin to the location of the proton
    5·1 answer
  • The precision of a laboratory instrument is ± 0.05 g. The accepted value for your measurement is 7.92 g. Which measurements are
    15·2 answers
  • What do you think is the charge of the nucleus of an atom
    5·1 answer
  • Just need help with this one
    14·1 answer
  • What do simple machines accomplish
    12·2 answers
  • A toboggan approaches a snowy hill moving at 12.4 m/s. The coefficients of static and kinetic friction between the snow and the
    9·1 answer
  • A 4,350 kg truck traveling east has a momentum of 26,100kg m/s what's the trucks velocity
    14·1 answer
  • A paper clip moves towards a magnet lying on a table. What forces are present in this situation? How do these forces compare?
    15·1 answer
  • A sinusoidal sound wave moves through a medium and is described by the displacement wave function
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!