We have the following equation for height:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
Where,
a: acceleration
vo: initial speed
h0: initial height.
The value of the acceleration is:
a = -g = -9.8 m / s ^ 2
For t = 0 we have:
h (0) = (1/2) * (a) * 0 ^ 2 + vo * 0 + h0
h (0) = h0
h0 = 0 (reference system equal to zero when the ball is hit).
For t = 5.8 we have:
h (5.8) = (1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0
(1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0 = 0
vo = (1/2) * (9.8) * (5.8)
vo = 28.42
Substituting values we have:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
h (t) = (1/2) * (- 9.8) * t ^ 2 + 28.42 * t + 0
Rewriting:
h (t) = -4.9 * t ^ 2 + 28.42 * t
The maximum height occurs when:
h '(t) = -9.8 * t + 28.42
-9.8 * t + 28.42 = 0
t = 28.42 / 9.8
t = 2.9 seconds.
Answer:
The ball was at maximum elevation when:
t = 2.9 seconds.
The boat is initially at equilibrium since it seems to start off at a constant speed of 5.5 m/s. If the wind applies a force of 950 N, then it is applying an acceleration <em>a</em> of
950 N = (2300 kg) <em>a</em>
<em>a</em> = (950 N) / (2300 kg)
<em>a</em> ≈ 0.413 m/s²
Take east to be positive and west to be negative, so that the boat has an initial velocity of -5.5 m/s. Then after 11.5 s, the boat will attain a velocity of
<em>v</em> = -5.5 m/s + <em>a</em> (11.5 s)
<em>v</em> = -0.75 m/s
which means the wind slows the boat down to a velocity of 0.75 m/s westward.
It is called a photon i believe
In the formation of flat bones such as the skull the mandibles and the clavicles
Sorry to say but I know that t(e introduction is first and the coda is last