A car moves along an x axis through a distance of 900 m, starting at rest (at x = 0) and ending at rest (at x = 900 m). Through the first 1/4 of that distance, its acceleration is +6.25 m/s2. Through the next 3/4 of that distance, its acceleration is -2.08 m/s2. What are (a) its travel time through the 900 m and (b) its maximum speed?
<span>Solve for the time at the 1/4 mark. That's 225 m. How? d = (1/2)at^2 ( initial velocity zero). Thus 225 = (1/2) 6.25 t^2. t^2 = ( 225 * 2 ) / 6.25. t = 8.5 sec. </span>
<span>At the other end t^2 = (675 * 2) / 2.08 -- we reversed the sign and ran time backwards. t = 25.5 sec. </span>
<span>So total time is 8.5 + 25.5 or 34 sec. </span>
<span>Since zero initial velocity: v^2 = 2 a d. Here, v^2 = 2 * 6.25 * 225. v = 53 m/s. That's the fastest speed since braking then occurs.</span>
Answer:
Explanation:One method of calculating average speed is to divide the total distance by the total time spent
d1=d2= 12 miles
d1=d2= 19312.1 m



There is slight difference between the average speeds due to the reason that average speed is not just the midpoint of the speed but is the total distance traveled by total time.
Answer:
I think velocity is 5m/s.