Answer:
so simple
Explanation:
25×3600= 18000+7200=25200sec
Based on the calculations, the speed required for this satellite to stay in orbit is equal to 1.8 × 10³ m/s.
<u>Given the following data:</u>
- Gravitational constant = 6.67 × 10⁻¹¹ m/kg²
- Mass of Moon = 7.36 × 10²² kg
- Distance, r = 4.2 × 10⁶ m.
<h3>How to determine the speed of this satellite?</h3>
In order to determine the speed of this satellite to stay in orbit, the centripetal force acting on it must be sufficient to change its direction.
This ultimately implies that, the centripetal force must be equal to the gravitational force as shown below:
Fc = Fg
mv²/r = GmM/r²
<u>Where:</u>
- m is the mass of the satellite.
Making v the subject of formula, we have;
v = √(GM/r)
Substituting the given parameters into the formula, we have;
v = √(6.67 × 10⁻¹¹ × 7.36 × 10²²/4.2 × 10⁶)
v = √(1,168,838.095)
v = 1,081.13 m/s.
Speed, v = 1.8 × 10³ m/s.
Read more on speed here: brainly.com/question/20162935
#SPJ1
<span> planetary satellites vary greatly in size, from very small, to some that are larger than some planets.</span>
0N. The net force acting on this firework is 0.
The key to solve this problem is using the net force formula based on the diagram shown in the image. Fnet = F1 + F2.....Fn.
Based on the free-body diagram, we have:
The force of gases is Fgases = 9,452N
The force of the rocket Frocket = -9452
Then, the net force acting is:
Fnet = Fgases + Frocket
Fnet = 9,452N - 9,452N = 0N