Answer:
B
Explanation:
Heat flows from hot to cold to lower the temperature of hot areas and increase temperature of cold areas. The end result is that the 2 areas have the same temperature, thus increasing entropy.
You'd get an extra 40/60 of the energy, or 2/3. Multiply 5/3 by the required energy to get the actual consumption.
<h2>
Mercury, Neptune, and Jupiter </h2>
Explanation:
- Mercury has the largest semimajor axis that is 5.791 x 107 in km.
- Mercury is the planet with the fastest speed, which has an average orbital speed around the sun for about 47.87 km/s.
- Neptune has the longest orbital speed around the sun of any planet in the Solar System which is equivalent to 164.8 years (or 60,182 Earth days)
- Jupiter has the largest eccentricity.
Hence, the answer is Mercury, Neptune, and Jupiter respectively.
Answer:
a) P =392.4[Pa]; b) F = 706.32[N]
Explanation:
With the input data of the problem we can calculate the area of the tank base
L = length = 10[m]
W = width = 18[cm] = 0.18[m]
A = W * L = 0.18*10
A = 1.8[m^2]
a)
Pressure can be calculated by knowing the density of the water and the height of the water column within the tank which is equal to h:
P = density * g *h
where:
density = 1000[kg/m^3]
g = gravity = 9.81[m/s^2]
h = heigth = 4[cm] = 0.04[m]
P = 1000*9.81*0.04
P = 392.4[Pa]
The force can be easily calculated knowing the relationship between pressure and force:
P = F/A
F = P*A
F = 392.4*1.8
F = 706.32[N]
Answer:
The longest wavelength of light that is capable of ejecting electrons from that metal is 1292 nm.
Explanation:
Given that,
Wavelength = 400 nm
Energy 
We need to calculate the longest wavelength of light that is capable of ejecting electrons from that metal
Using formula of energy


Put the value into the formula



Hence, The longest wavelength of light that is capable of ejecting electrons from that metal is 1292 nm.