Answer:
12 ounces of beer plus 12 ounces of wine plus 3 ounces of liquor are equivalent to 6 drinks.
Explanation:
In the United States, a standard "drink" of beer has 12 ounces, a standard "drink" of wine has 5 ounces and standard drink of liquor has 1.5 ounces. Then, we obtain the quantity of drinks by dividing the total volume of each drink by its respective unit volume and summing each term. That is:




12 ounces of beer plus 12 ounces of wine plus 3 ounces of liquor are equivalent to 6 drinks.
One of the brightest nebulae in the night sky, the Orion Nebula may be seen with the unaided eye. The Trapezium is a young open cluster of four main stars in this magnitude 4 interstellar cloud of ionized atomic hydrogen.
<h3>What is the source of the Orion Nebula's crimson glow?</h3>
- The hydrogen gas in the Orion Nebula, which is powered by radiation from young stars, gives off a crimson tint. The nebula's blue-violet regions are reflecting radiation from bright, blue-white O-type stars while the red areas are emitting light.
- The Orion Nebula is one of many massive clouds of gas and dust in our Milky Way galaxy, say contemporary astronomers, and is one of the largest. It is approximately 1,300 light years away from Earth. This enormous hazy cocoon, which measures approximately 30 to 40 light-years in diameter, is generating potentially a thousand stars.
To learn more about Orion nebula refer to:
brainly.com/question/15575332
#SPJ4
The strength of the fireman in vertical direction will be given by F = m * g. Then, the work done will be given by definition by W = F * d. Substituting the expression of the Force in that of the work, we have that the work will be W = m * g * d. Substituting the given values and assuming that g = 10m / s ^ 2, we have a total work of W = (73) * (10) * (9) = 6570 J
A) d. 10T
When a charged particle moves at right angle to a uniform magnetic field, it experiences a force whose magnitude os given by

where q is the charge of the particle, v is the velocity, B is the strength of the magnetic field.
This force acts as a centripetal force, keeping the particle in a circular motion - so we can write

which can be rewritten as

The velocity can be rewritten as the ratio between the lenght of the circumference and the period of revolution (T):

So, we get:

We see that this the period of revolution is directly proportional to the mass of the particle: therefore, if the second particle is 10 times as massive, then its period will be 10 times longer.
B) 
The frequency of revolution of a particle in uniform circular motion is

where
f is the frequency
T is the period
We see that the frequency is inversely proportional to the period. Therefore, if the period of the more massive particle is 10 times that of the smaller particle:
T' = 10 T
Then its frequency of revolution will be:
