Excitatory neurotransmitters cause the neuron to fire, and Inhibitory neurotransmitters cause the neuron not to fire.
Impulses are the signals passed from one neuron to another on the action of a stimulus. The impulses passed can be electrical or chemical. Neurotransmitters are the chemical molecules that help in the transfer of impulses between two neurons.
Chemicals like epinephrine, norepinephrine, and glutamate when released from the synaptic cleft of one neuron activate the receptors of other neurons, thereby initiating the other neuron to fire. These chemicals are called excitatory neurotransmitters.
Chemicals like GABA and glycine, when released from the synaptic cleft of one neuron do not activate the receptors of other neurons and hence the neurons will not fire the impulse. These chemicals are called inhibitory neurotransmitters.
To know more about neurotransmitters, visit
brainly.com/question/26387085
#SPJ4
Answer:
<em>The correct option is C) Continental shelves</em>
Explanation:
The continental shelf can be described as a part of a continent which is submerged in shallow water. This shallow water is known as a shelf. Hence, the name continental shelves.
Rich deposits of oil and natural gas can be present in this part of the sea. The continental shelves are of extreme commercial significance and are a commercial site for exploitation. The continental shelves can be rich in metallic and non- metallic ores and hydrocarbon products.
Answer:
Both facilitated diffusion and active transport are selective processes. Only selective molecules are allowed to cross the membrane. They utilize carrier proteins to move across the membrane.
Explanation:
Diffusion is the process by which molecules move across a membrane respective of the concentration gradient. The plasma membrane is a <em>selectively permeable membrane</em> which allows specific molecules to move across the concentration gradient.
Molecules migrate from a region of higher concentration to a lower concentration in case of diffusion. It can be classified into simple diffusion and facilitated diffusion. These are examples of <em>passive transport</em>.
In facilitated diffusion molecules move across the concentration gradient with the help of <em>carrier proteins or channel proteins</em>. The carrier proteins bind to the molecule which has to be transported and change conformation to allow it to cross the membrane. For example glucose molecule is carried across through <em>GLUT transporter</em>. <em>Channel proteins</em> open a channel inside the membrane and molecules get transported across the gradient.
Active transport carries molecules against the concentration gradient with the assist of energy. ATP hydrolysis is utilized to generate energy. As a result of active transport, the molecules are aggregated on one side of the membrane.
Answer:
Statement C is the only one that is necessarily true for exons 2 and 3. It is also true for exons 7 and 8. While statements A and B could be true, they don’thave to be. Because the protein sequence is the same in segments of the mRNA that correspond to exons 1 and 10, neither choice of alternative exons (2 versus 3, or 7 versus 8) can alter the reading frame. To maintain the normal reading frame—whatever that is—the alternative exons must have a number of nucleotides that when divided by 3 (the number of nucleotides in a codon) give the same remainder. Since the sequence of the a-tropomyosin gene is known, it is possible to check to see the actual state of affairs. Exons 2 and 3 both contain the same number of nucleotides, 126, which is divisible by 3 with no remainder.