Answer:
![H_0: p = 0.5\\H_a: p \neq 0.5](https://tex.z-dn.net/?f=H_0%3A%20p%20%3D%200.5%5C%5CH_a%3A%20p%20%5Cneq%200.5)
a. We get 56 heads out of 100 tosses.
We will use one sample proportion test
x = 56
n = 100
![\widehat{p}=\frac{x}{n}](https://tex.z-dn.net/?f=%5Cwidehat%7Bp%7D%3D%5Cfrac%7Bx%7D%7Bn%7D)
![\widehat{p}=\frac{56}{100}](https://tex.z-dn.net/?f=%5Cwidehat%7Bp%7D%3D%5Cfrac%7B56%7D%7B100%7D)
![\widehat{p}=0.56](https://tex.z-dn.net/?f=%5Cwidehat%7Bp%7D%3D0.56)
Formula of test statistic =![\frac{\widehat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cwidehat%7Bp%7D-p%7D%7B%5Csqrt%7B%5Cfrac%7Bp%281-p%29%7D%7Bn%7D%7D%7D)
=![\frac{0.56-0.5}{\sqrt{\frac{0.5(1-0.5)}{100}}}](https://tex.z-dn.net/?f=%5Cfrac%7B0.56-0.5%7D%7B%5Csqrt%7B%5Cfrac%7B0.5%281-0.5%29%7D%7B100%7D%7D%7D)
=![1.2](https://tex.z-dn.net/?f=1.2)
refer the z table for p value
p value = 0.8849
a. We get 560 heads out of 1000 tosses.
We will use one sample proportion test
x = 560
n = 1000
![\widehat{p}=\frac{x}{n}](https://tex.z-dn.net/?f=%5Cwidehat%7Bp%7D%3D%5Cfrac%7Bx%7D%7Bn%7D)
![\widehat{p}=\frac{560}{1000}](https://tex.z-dn.net/?f=%5Cwidehat%7Bp%7D%3D%5Cfrac%7B560%7D%7B1000%7D)
![\widehat{p}=0.56](https://tex.z-dn.net/?f=%5Cwidehat%7Bp%7D%3D0.56)
Formula of test statistic =![\frac{\widehat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cwidehat%7Bp%7D-p%7D%7B%5Csqrt%7B%5Cfrac%7Bp%281-p%29%7D%7Bn%7D%7D%7D)
=![\frac{0.56-0.5}{\sqrt{\frac{0.5(1-0.5)}{1000}}}](https://tex.z-dn.net/?f=%5Cfrac%7B0.56-0.5%7D%7B%5Csqrt%7B%5Cfrac%7B0.5%281-0.5%29%7D%7B1000%7D%7D%7D)
=![3.794](https://tex.z-dn.net/?f=3.794)
refer the z table for p value
p value = .000148
p value of part B is less than Part A because part B have 10 times the number the tosses.
Answer:
It's 15
i took the test
Step-by-step explanation:
Let x = the number of hours Eva needs to complete the job
and y = the number of hours Emily needs to complete the job
x = 6
1/x + 1/y = 1/4
(The amount of work Eva does in 1 hr + the amount of work Emily does in 1 hr should equal 1/4 of the total work)
1/6 + 1/y = 1/4
1/y = 1/12
y = 12 hours
Emily would take 12 hours to do it by herself.