It's B because when you throw something it doesn't go up it slowly descends downward
Answer:
Newton's third law of motion states that whenever a first object exerts a force on a second object, the first object experiences a force equal in magnitude but opposite in direction to the force that it exerts. ... Newton's third law is useful for figuring out which forces are external to a system.
Explanation:
is these what you're looking for?
The advantage of using a solar cooker is that it is Eco-friendly and the disadvantage is that it can be used only under certain conditions.
<h3><u>
Explanation:</u></h3>
A solar cooker is used for cooking food without having to use electricity or gas. Instead, the appliance uses heat from the sun to cook food. It is used widely in by people who travel in remote areas or go on trips. But the appliance has limitations of its own too.
ADVANTAGES
- Using it is friendly to the environment
- It can be easily assembled without expert assistance
- No compromise on the quality and taste of foo
DISADVANTAGES
- Requires sun to function and prepare food
- Cannot function in winters or monsoon when the sun isn't present
- Does not retain heat as efficiently and quickly as compared to other cooking appliances
Answer:
A = 2.36m/s
B = 3.71m/s²
C = 29.61m/s2
Explanation:
First, we convert the diameter of the ride from ft to m
10ft = 3m
Speed of the rider is the
v = circumference of the circle divided by time of rotation
v = [2π(D/2)]/T
v = [2π(3/2)]/4
v = 3π/4
v = 2.36m/s
Radial acceleration can also be found as a = v²/r
Where v = speed of the rider
r = radius of the ride
a = 2.36²/1.5
a = 3.71m/s²
If the time of revolution is halved, then radial acceleration is
A = 4π²R/T²
A = (4 * π² * 3)/2²
A = 118.44/4
A = 29.61m/s²
Answer:
It would take
time for the capacitor to discharge from
to
.
It would take
time for the capacitor to discharge from
to
.
Note that
, and that
.
Explanation:
In an RC circuit, a capacitor is connected directly to a resistor. Let the time constant of this circuit is
, and the initial charge of the capacitor be
. Then at time
, the charge stored in the capacitor would be:
.
<h3>a)</h3>
.
Apply the equation
:
.
The goal is to solve for
in terms of
. Rearrange the equation:
.
Take the natural logarithm of both sides:
.
.
.
<h3>b)</h3>
.
Apply the equation
:
.
The goal is to solve for
in terms of
. Rearrange the equation:
.
Take the natural logarithm of both sides:
.
.
.