Answer:
2. The metal surface exerts less frictional force because there are fewer bumps and irregularities on it than there are on the concrete.
Explanation:
Frictional force is a force that is exerted between two surfaces in contact with each other. Frictional force always opposes the direction of relative motion of the two surfaces: for instance, for a ball moving along a surface, the force of friction exerted by the surface on the ball points opposite to the direction of motion of the ball.
The magnitude of the frictional force for a ball moving on a flat surface is given by

where
is the coefficient of friction
m is the mass of the ball
g is the acceleration of gravity
The value of
depends on the type of surface involved. In particular, a smooth surface has a smaller value of
, while a rough surface will have a bigger value. In this case, we are comparing a smooth metal surface with concrete: since the metal surface has fewer bumps and irregularities than concrete, it has a smaller value of coefficient of friction, so it exerts less frictional force than concrete.
Have in mind: Energy is always conserved and, (...) be transferred between objects or systems, from one form to another.
Hence, the true relation is C, when a system gains kinetic energy, it loses potential energy.
Think about this,
K + P = constant
If K increases, then P need to decreases to holds the above relation.
As velocities are tangent, the value of both Particle A and Particle B would be same for that point O (Intersecting point)
a = v / t
Here, v = 7, t = 6
So, a = 7/6
a = 1.17
As the graph is decreasing, value of acceleration would be negative.
So, a = -1.17 m/s²
In short, Your Answer would be Option C
Hope this helps!