Answer:
Explanation:
Given that,
The frequency of vibration is 120Hz
The mass of object attached is 0.5kg.
We want to find the tension In the string
The tension in the string is the weight of the object, it is how much gravity is pulling the object to the centre of the earth
Using newton second law.
F_net = m•a_y
The body is not accelerating the y-direction, then, a_y = 0
F_net = 0
Force acting on the string is the weight of the object and the tension in the string
T - W = 0
T = W
Where weight is mass × gravity
W = mg
Then,
T = W = mg
T = mg = 0.5 × 9.81
T = 4.905 N
The tension in the string is 4.905 N
Answer:
Explanation:
The direction of propagation of electromagnetic wave
is given by the direction of vector E x B where E is electrical field , B is magnetic field .
Given Electric field = E i because it is along x axis
Magnetic field = Bj because it is along y axis
E x B = Ei x Bj
= EB k .
so direction of E x B is along k direction or z - axis so wave is propagating along z - axis .
Answer:
the heart would fail to efficiently pump oxygenated blood to the body and lungs
Answer:
The car traveled the distance before stopping is 90 m.
Explanation:
Given that,
Mass of automobile = 2000 kg
speed = 30 m/s
Braking force = 10000 N
For, The acceleration is
Using newton's formula

Where, f = force
m= mass
a = acceleration
Put the value of F and m into the formula

Negative sing shows the braking force.
It shows the direction of force is opposite of the motion.


For the distance,
Using third equation of motion

Where, v= final velocity
u = initial velocity
a = acceleration
s = stopping distance of car
Put the value in the equation


Hence, The car traveled the distance before stopping is 90 m.