As we sit in a chair, Action force will be only in one direction and that direction would be downward only.
In short, Your Answer would be Option A
Hope this helps!
Answer:
x component 3.88 y- component 14.488
Explanation:
We have given a vector A which has a magnitude of 15 m/sec which is at 75° counter-clock wise ( anti-clock wise) from x -axis which is clearly shown in bellow figure
Now x-component will be 15 cos75°=3.8822 ( as it makes an angle of 75° with x-axis )
y- component will be 15 sin 75°=14.488
For verification the resultant of x and y component should be equal to 15
So 
Answer:
7.07 hours
Explanation:
divide the distance by the speed
so in this case, divide 672 by 95
(a) The plane makes 4.3 revolutions per minute, so it makes a single revolution in
(1 min) / (4.3 rev) ≈ 0.2326 min ≈ 13.95 s ≈ 14 s
(b) The plane completes 1 revolution in about 14 s, so that in this time it travels a distance equal to the circumference of the path:
(2<em>π</em> (23 m)) / (14 s) ≈ 10.3568 m/s ≈ 10 m/s
(c) The plane accelerates toward the center of the path with magnitude
<em>a</em> = (10 m/s)² / (23 m) ≈ 4.6636 m/s² ≈ 4.7 m/s²
(d) By Newton's second law, the tension in the line is
<em>F</em> = (1.3 kg) (4.7 m/s²) ≈ 6.0627 N ≈ 6.1 N
The solution is:
Paige's force is (somewhat) against the direction of motion: Work = F * d Where F is the force; andd is the distance
Our f is 64 N and our distance is 20 and -3.6Plugging that in our equation will give us:
= 64N * cos20º * -3.6m = -217 J