The maximum force of static friction is the product of normal force (P) and the coefficient of static friction (c). In a flat surface, normal force is equal to the weight (W) of the body.
P = W = mass x acceleration due to gravity
P = (0.3 kg) x (9.8 m/s²) = 2.94 kg m/s² = 2.94 N
Solving for the static friction force (F),
F = P x c
F = (2.94 N) x 0.6 = 1.794 N
Therefore, the maximum force of static friction is 1.794 N.
The magnitude of the downward acceleration of the hollow cylinder is 6m/s^2.
Z = I α
T.R =1/2 M (
+
)α
T.R = 1/2M 5
/4 α
T = 5Ma/8
Mg - T = Ma
Mg - 5Ma/8 = Ma
Mg= 5Ma/8 + Ma = 13Ma / 8
acceleration = 8g/13 = 6 m/s^2
The rate at which an object's velocity with respect to time changes is called its acceleration. The direction of the net force imposed on an item determines its acceleration in relation to that force. According to Newton's Second Law, the magnitude of an object's acceleration is the result of two factors working together
The size of the net balance of all external forces acting on that item is directly proportional to the magnitude of this net resultant force; the magnitude of that object's mass, depending on the materials from which it is built, is inversely related to its mass.
Learn more about acceleration here:
brainly.com/question/2303856
#SPJ4
potential energy = mass × gravity × height
so, change in potential energy = mass × gravity × change in height
2 = 50 × 10 × Δh
2 ÷ 500 = Δh
Δh = 0.004 m
This distance does depend on the initial velocity of the ball.
Answer: The correct answer for the blank is- a. change its position relative to other objects.
Perception of motion can be described as a phenomenon of inferring the direction and speed and of objects, which are moving in a visual scene.
An object is said to be in motion if its position is changed with respect to objects that are present in its surrounding.
Thus, in order to sense motion of objects, humans beings are required to see an object change its position with respect to other objects.
Answer:
, charges are both positive or both negative
Explanation:
The electrostatic force between the two spheres is given by

where
k is the Coulomb's constant
q1 and q2 are the charges on the two spheres
r is the distance between the centres of the two spheres
In this problem, we have
is the force
is the distance between the spheres
because the two spheres have identical charge
Solving the formula for q, we find

And the two charges have the same sign (so, both positive or both negative), since the sign of the force is positive (+0.30 N), so it is a repulsive force.