Answer:
The 98% confidence interval estimate of the true average amount of soft drink in each bottle is between 2.97 liters and 3.01 liters.
Step-by-step explanation:
We have the standard deviation for the sample, so we use the t-distribution to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 64 - 1 = 63
98% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 63 degrees of freedom(y-axis) and a confidence level of
. So we have T = 2.387
The margin of error is:

In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 2.99 - 0.02 = 2.97 liters
The upper end of the interval is the sample mean added to M. So it is 2.99 + 0.02 = 3.01 liters
The 98% confidence interval estimate of the true average amount of soft drink in each bottle is between 2.97 liters and 3.01 liters.
Answer:
Sequence: Reflection over the y-axis, then 1 to the right and 2 down to get the triangle ABC to A'B'C.
Step-by-step explanation:
Have a nice day!
Send me your email I will send the working.
The answers:
x = 1
y = -5
By using the triangular inequality, we will see that no triangles can be made with these side lengths.
<h3>
How many triangles can be made with these side lengths?</h3>
Remember that for any triangle with side lengths A, B, and C, the triangular inequality must be true.
This means that the sum of any two sides must be larger than the other side.
A + B > C
A + C > B
B + C > A.
For the given side lengths, we will have:
8 in + 12 in > 24 in
8in + 24 in > 12 in
12 in + 24 in > 8 in.
Now, notice that the first inequality is false. So the triangular inequality is not meet. Then we can't make a triangle with these side lengths.
So we can make 0 unique triangles with these side lengths.
If you want to learn more about triangles:
brainly.com/question/2217700
#SPJ1