The number of presale tickets sold is 271
<em><u>Solution:</u></em>
Let "p" be the number of presale tickets sold
Let "g" be the number of tickets sold at gate
<em><u>Given that, total of 800 Pre-sale tickets and tickets at the gate were sold</u></em>
Therefore,
Presale tickets + tickets sold at gate = 800
p + g = 800 ------ eqn 1
<em><u>Given that, number of tickets sold at the gate was thirteen less than twice the number of pre-sale tickets</u></em>
Therefore,
Number of tickets sold at gate = twice the number of pre-sale tickets - 13
g = 2p - 13 ------- eqn 2
<em><u>Let us solve eqn 1 and eqn 2</u></em>
Substitute eqn 2 in eqn 1
p + 2p - 13 = 800
3p -13 = 800
3p = 800 + 13
3p = 813
p = 271
Thus 271 presale tickets were sold
Answer:
x = 55
Step-by-step explanation:
For PQ and RS to be parallel then
∠ACQ = ∠RDB ( Alternate exterior angles ), thus
3x - 65 = 2x - 10 ( subtract 2x from both sides )
x - 65 = - 10 ( add 65 to both sides )
x = 55
Answer:
11/30 or 0.36
Step-by-step explanation:
The length of EF in the given triangle is 8.80 m.
Step-by-step explanation:
Step 1:
In the given triangle, the opposite side's length is 16.2 m, the adjacent side's length is x m while the triangle's hypotenuse measures 16.2 m units.
The angle given is 90°, this makes the triangle a right-angled triangle.
So first we calculate the angle of E and use that to find x.
Step 2:
As we have the values of the length of the opposite side and the hypotenuse, we can calculate the sine of the angle to determine the value of the angle of E.


So the angle E of the triangle DEF is 57.087°.
Step 3:
As we have the values of the angle and the hypotenuse, we can calculate the cos of the angle to determine x.


Rounding this off to the nearest hundredth, we get x = 8.80 m.
He spent $2.35 at the store. Hope it helps! :D