Step-by-step explanation:
please don't understand the question. will be happy if you take a shot of it.
Thanks
Let's see what the options look like when we multiply the expressions in brackets:
(first, i multiply both parts of the second bracked by the first part of the first bracket, and then the same with the second part of the first bracket:
<span>(1) (3x - 3)(x - 2))
3x2 +6x -3x +6// this is not correct
(2) (3x + 3)(x - 2) </span>
3x2-6x+3x-6//this is not correct
(3)
3(x + 1)(x - 2)
3(x2-2x+x-2)//simplifying:
3(x2-x-2)//multiplying:
3x2-3x-6)
- so this is not correct either
(4) 3(x - 1)(x - 2)
3(x2-2x - x + 2)
3(x2-3x +2)
3x2-9x +6 - well, here is our winner!
6x+3y=15
6*2+3y=15
12+3y=15
3y=3
y=1
6x+3y=15
6*5+3y=15
30+3y=15
3y=-15
y=-5
The answers is y=1 & -5
Answer:
The mean is 9.65 ohms and the standard deviation is 0.2742 ohms.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
10% of all resistors having a resistance exceeding 10.634 ohms
This means that when X = 10.634, Z has a pvalue of 1-0.1 = 0.9. So when X = 10.634, Z = 1.28.




5% having a resistance smaller than 9.7565 ohms.
This means that when X = 9.7565, Z has a pvalue of 0.05. So when X = 9.7565, Z = -1.96.




We also have that:

So





The mean is

The mean is 9.65 ohms and the standard deviation is 0.2742 ohms.
The answer is 6/5 (six over five) 100 divided by 20