The question is asking to describe and state and calculate what do the observer on the earth measure for the speed of the laser beam, and base on my research, the answer would be v = 1bc, I hope you are satisfied with my answer and feel free to ask for more
The sound wave will have traveled 2565 m farther in water than in air.
Answer:
Explanation:
It is known that distance covered by any object is directly proportional to the velocity of the object and the time taken to cover that distance.
Distance = Velocity × Time.
So if time is kept constant, then the distance covered by a wave can vary depending on the velocity of the wave.
As we can see in the present case, the velocity of sound wave in air is 343 m/s. So in 2.25 s, the sound wave will be able to cover the distance as shown below.
Distance = 343 × 2.25 =771.75 m
And for the sound wave travelling in fresh water, the velocity is given as 1483 m/s. So in a time interval of 2.25 s, the distance can be determined as the product of velocity and time.
Distance = 1483×2.25=3337 m.
Since, the velocity of sound wave travelling in fresh water is greater than the sound wave travelling in air, the distance traveled by sound wave in fresh water will be greater.
Difference in distance covered in water and air = 3337-772 m = 2565 m
So the sound wave will have traveled 2565 m farther in water than in air.
Answer:
1 bright fringe every 33 cm.
Explanation:
The formula to calculate the position of the m-th order brigh line (constructive interference) produced by diffraction of light through a diffraction grating is:

where
m is the order of the maximum
is the wavelength of the light
D is the distance of the screen
d is the separation between two adjacent slit
Here we have:
is the wavelength of the light
D = 1 m is the distance of the screen (not given in the problem, so we assume it to be 1 meter)
is the number of lines per mm, so the spacing between two lines is

Therefore, substituting m = 1, we find:

So, on the distant screen, there is 1 bright fringe every 33 cm.
A. it is <span>located at a distance of 2.6 million light years from earth</span>
Answer:
A) If you halve the wavelength, the electromagnetic radiation energy will double.
B) The energy of the electromagnetic radiation will halve if you halve the wavenumber.
C) When the frequency of the light is doubled, its energy will double.
Explanation:
The function for the light frequency is given as
The energy supplied to each electron is doubled by halving the wavelength, nearly doubling its kinetic energy by two after it is free from the metal. It is important to remember that for a given period of time, the number of electrons ejected will remain constant.
Cheers