Answer and explanation;
The use of coal has steadily increased from 1800 to 2004. Burning coal was the leading cause of global fossil carbon emissions. Petroleum use rose quickly after 1950.
Coal can be defined as a sedimentary rock that burns. It was formed by the decomposition of plant matter, and it is a complex substance that can be found in many forms.
Energy consumption patterns have changed over the history of our country as we developed new energy sources and as our uses of energy changed. Coal became dominant in the late 19th century before being overtaken by petroleum products in the middle of the last century, a time when natural gas usage also rose quickly.
The answer is d. Each of its particles becomes surrounded by water molecules.
Notice that when you dissolve a solid compound in the water, it is no longer visible in or eyes, it mixes in the water, it is because it is being divided into smaller particles and each particles were surrounded by the water molecules.
Answer:
E = 1.19 N/C
Explanation:
Let's first determine the length of the arc which can be given as:
L= Rθ
where:
L = length of the arc
R = radius of curvature
θ = angle in radius
L = (9.09×10⁻²m)(2.59)
L = (0.0909)(2.59)
L = 0.235431 m
Then, the magnitude of electric field that Q produces at the center of curvature can be calculated by using the formula:
![E= \frac{\lambda}{4 \pi E_oR}[sin\frac{\theta}{2}-sin(-\frac{\theta}{2})]](https://tex.z-dn.net/?f=E%3D%20%5Cfrac%7B%5Clambda%7D%7B4%20%5Cpi%20E_oR%7D%5Bsin%5Cfrac%7B%5Ctheta%7D%7B2%7D-sin%28-%5Cfrac%7B%5Ctheta%7D%7B2%7D%29%5D)
![E= \frac{\lambda}{4 \pi E_oR}[sin\frac{\theta}{2}+sin(\frac{\theta}{2})]](https://tex.z-dn.net/?f=E%3D%20%5Cfrac%7B%5Clambda%7D%7B4%20%5Cpi%20E_oR%7D%5Bsin%5Cfrac%7B%5Ctheta%7D%7B2%7D%2Bsin%28%5Cfrac%7B%5Ctheta%7D%7B2%7D%29%5D)
![E= \frac{2\lambda}{4 \pi E_oR}[sin\frac{\theta}{2}]](https://tex.z-dn.net/?f=E%3D%20%5Cfrac%7B2%5Clambda%7D%7B4%20%5Cpi%20E_oR%7D%5Bsin%5Cfrac%7B%5Ctheta%7D%7B2%7D%5D)
Since 
where;
L = length
Q = charge
λ = density of the charge;
then substituting
for λ, we have :
![E= \frac{2(\frac{Q}{L})}{4 \pi E_oR}[sin\frac{\theta}{2}]](https://tex.z-dn.net/?f=E%3D%20%5Cfrac%7B2%28%5Cfrac%7BQ%7D%7BL%7D%29%7D%7B4%20%5Cpi%20E_oR%7D%5Bsin%5Cfrac%7B%5Ctheta%7D%7B2%7D%5D)
![E= \frac{2Q[sin\frac{\theta}{2}]}{4 \pi E_oLR}](https://tex.z-dn.net/?f=E%3D%20%5Cfrac%7B2Q%5Bsin%5Cfrac%7B%5Ctheta%7D%7B2%7D%5D%7D%7B4%20%5Cpi%20E_oLR%7D)
substituting our given parameter; we have:
![E= \frac{2(6.26*10^{-12}C)[sin\frac{2.59rad}{2}]}{4 \pi (8.85*10^{-12}C^2/N.m^2)(0.235431)(0.0909)}](https://tex.z-dn.net/?f=E%3D%20%5Cfrac%7B2%286.26%2A10%5E%7B-12%7DC%29%5Bsin%5Cfrac%7B2.59rad%7D%7B2%7D%5D%7D%7B4%20%5Cpi%20%288.85%2A10%5E%7B-12%7DC%5E2%2FN.m%5E2%29%280.235431%29%280.0909%29%7D)
E = 1.1889 N/C
E = 1.19 N/C
∴ the magnitude of the electric field that Q produces at the center of curvature = 1.19 N/C
The distance from the base of the building the rock will land is 26.4 m
<h3>Data obtained from the question </h3>
- Horizontal velocity (u) = 20 m/s
- Height (h) = 8.50 m
- Distance (s) =?
<h3>Determination of the time to reach the ground </h3>
- Height (h) = 8.50 m
- Acceleration due to gravity (g) = 9.8 m/s²
- Time (t) =?
h = ½gt²
8.5 = ½ × 9.8 × t²
8.5 = 4.9 × t²
Divide both side by 4.9
t² = 8.5 / 4.9
Take the square root of both side
t = √(8.5 / 4.9)
t = 1.32 s
<h3>How to determine the distance </h3>
- Horizontal velocity (u) = 20 m/s
- Time (t) = 1.32 s
- Distance (s) =?
s = ut
s = 20 × 1.32
s = 26.4 m
Learn more about motion under gravity:
brainly.com/question/22719691