Answer:
a) P = 44850 N
b) 
Explanation:
Given:
Cross-section area of the specimen, A = 130 mm² = 0.00013 m²
stress, σ = 345 MPa = 345 × 10⁶ Pa
Modulus of elasticity, E = 103 GPa = 103 × 10⁹ Pa
Initial length, L = 76 mm = 0.076 m
a) The stress is given as:

on substituting the values, we get

or
Load, P = 44850 N
Hence<u> the maximum load that can be applied is 44850 N = 44.85 KN</u>
b)The deformation (
) due to an axial load is given as:

on substituting the values, we get

or

Answer:
Explanation:
Let the length of inclined plane be L .
work done by gravity on the block
= force x length of path
= mg sinθ x L , m is mass of the block , θ is inclination of path
This in converted into potential energy of compressed spring
1/2 k x² = mgL sin31 , k is force constant . x is compression
.5 x 3400 x .37² = 33 x9.8 x sin31 L
L = 1.4
Length of incline = 1.4 m .
Impulse equals to the force into the actual time period of the applied force . thus the force here given is 245.300 N and time is 0.05 thus the impulse is 12.265 Ns
They would be likely to be underweight. This is because the role of villi is to increase absorption of soluble molecules, they do this by increasing surface area for absorption to occur across.
If the person has less villi than normal in their small intestine, then the surface area will not be as large meaning there is less area for absorption to occur across so less soluble molecules will be absorbed.
Well you never specified what you're asking... however, this might help you learn the concepts of displacements and magnitude.
: The official displacement formula is as follows: s = sf - si. s = displacement; si = initial position; sf = final position
magnitude is the quantitative value of seismic energy. It is a specific value having no relation with distance and direction of the epicentre.
the magnitude of a vector in any dimension. For a 2d vector the formula is [math]|z| = \sqrt{x^2+y^2}[/math], where x and y are the x and y components of the vector respectively.