<h3>
✽ - - - - - - - - - - - - - - - ~<u>
Hello There</u>
!~ - - - - - - - - - - - - - - - ✽</h3>
➷ You would write this as:
6x^3 - 4
<h3><u>
✽</u></h3>
➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
↬ ʜᴀɴɴᴀʜ ♡
The area of the entire sector of DEF = 60 / 360 * PI * radius^2
sector area = 1 / 6 * 3.14159265... * 20^2
sector area =
<span>
<span>
<span>
209.4395102393
</span>
</span>
</span>
segment area = sector area - triangle DEF Area
triangle DEF Area = (1/2) * 20 * sine 60 * 20
triangle DEF Area = (1/2) * 0.86603 * 400
triangle DEF Area = <span><span><span>(1/2) * 346.412
</span>
</span>
</span>
triangle DEF Area =
<span>
<span>
<span>
173.206
</span>
</span>
</span>
segment area = <span>
<span>
209.4395102393
</span>
-173.206
</span>
segment area =
<span>
<span>
<span>
36.2335102393
</span>
</span>
</span>
segment area =
36.23 m
Source:
http://www.1728.org/circsect.htm
Answer:
<h2>there are 22 dimes</h2><h2>there are 44 nickles</h2><h2 />
Step-by-step explanation:
D be dimes and N be nickles
2 nickles as dime
nickle = 5 cents and dime =10 cents
N=2D
0.10 D + 0.05 (N)=4.4 substitute N=2D
0.10 D +0.05(2D)=4.4
0.10D+0.10D=4.4
0.20 D=4.4
D=4.4/0.2 = 22
<h2>there are 22 dimes</h2>
N=2D
N=2(22)
N=44
<h2>there are 44 nickles</h2>
check : 0.10(22)+0.05(44)= 4.4 (correct)
Answer:
The answer is 
Step-by-step explanation:
To calculate the volumen of the solid we solve the next double integral:

Solving:

![[6x^{2} ]{{1} \atop {0}} \right. * [\frac{y^{3}}{3}]{{1} \atop {0}} \right.](https://tex.z-dn.net/?f=%5B6x%5E%7B2%7D%20%5D%7B%7B1%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.%20%2A%20%5B%5Cfrac%7By%5E%7B3%7D%7D%7B3%7D%5D%7B%7B1%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
Replacing the limits:

The plane y=mx divides this volume in two equal parts. So volume of one part is 1.
Since m > 1, hence mx ≤ y ≤ 1, 0 ≤ x ≤ 
Solving the double integral with these new limits we have:

This part is a little bit tricky so let's solve the integral first for dy:
![\int\limits^\frac{1}{m}_0 [{12x \frac{y^{3}}{3}}]{{1} \atop {mx}} \right.\, dx =\int\limits^\frac{1}{m}_0 [{4x y^{3 }]{{1} \atop {mx}} \right.\, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%5Cfrac%7B1%7D%7Bm%7D_0%20%5B%7B12x%20%5Cfrac%7By%5E%7B3%7D%7D%7B3%7D%7D%5D%7B%7B1%7D%20%5Catop%20%7Bmx%7D%7D%20%5Cright.%5C%2C%20dx%20%3D%5Cint%5Climits%5E%5Cfrac%7B1%7D%7Bm%7D_0%20%5B%7B4x%20y%5E%7B3%20%7D%5D%7B%7B1%7D%20%5Catop%20%7Bmx%7D%7D%20%5Cright.%5C%2C%20dx)
Replacing the limits:

Solving now for dx:
![[{\frac{4x^{2}}{2} -\frac{4m^{3} x^{5}}{5} ]{{\frac{1}{m} } \atop {0}} \right. = [{2x^{2} -\frac{4m^{3} x^{5}}{5} ]{{\frac{1}{m} } \atop {0}} \right.](https://tex.z-dn.net/?f=%5B%7B%5Cfrac%7B4x%5E%7B2%7D%7D%7B2%7D%20-%5Cfrac%7B4m%5E%7B3%7D%20x%5E%7B5%7D%7D%7B5%7D%20%5D%7B%7B%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.%20%3D%20%5B%7B2x%5E%7B2%7D%20-%5Cfrac%7B4m%5E%7B3%7D%20x%5E%7B5%7D%7D%7B5%7D%20%5D%7B%7B%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
Replacing the limits:

As I mentioned before, this volume is equal to 1, hence:

Could you take a little bit clear picture? :)