Hmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm maybe
Answer:
They have same density
Explanation:
The density of an object is defined as

where
m is the mass of the object
V is its volume
Let's call
and
the mass and the volume of ball C, respectively. Therefore, the density of ball C is:

We know that the volume of ball C is 3 times the volume of ball D, so

And we also know that ball D has 1/3 the mass of ball C:

So, the density of ball D is:

Therefore, the two balls have same density.
Answer:
R = 6.3456 10⁴ mile
Explanation:
For this exercise we will use Newton's second law where force is gravitational force
F = m a
The satellite is in a circular orbit therefore the acceleration is centripetal
a = v² / r
Where the distance is taken from the center of the Earth
G m M / r² = m v² / r
G M / r = v²
The speed module is constant, let's use the uniform motion relationships, with the length of the circle is
d = 2π r
v = d / t
The time for a full turn is called period (T)
Let's replace
G M / r = (2π r / T)²
r³ = G M T²²2 / 4π²
r = ∛ (G M T² / 4π²)
We have the magnitudes in several types of units
T = 88.59 h (3600 s / 1h) = 3.189 10⁵ s
Re = 6.37 10⁶ m
Let's calculate
r = ∛ (6.67 10⁻¹¹ 5.98 10²⁴ (3,189 10⁵)²/4π²)
r = ∛ (1.027487 10²⁴)
r = 1.0847 10⁸ m
This is the distance from the center of the Earth, the distance you want the surface is
R = r - Re
R = 108.47 10⁶ - 6.37 10⁶
R = 102.1 10⁶ m
Let's reduce to miles
R = 102.1 10⁶ m (1 mile / 1609 m)
R = 6.3456 10⁴ mile
To work out kinetic energy, we use the following formula: KE = 0.5 x mv^2. So, 0.5 x 4 x 16^2 = 512 J
Explanation:
it holds protons and neutrons together