Answer:
9.75 km
Explanation:
Charlie runs 6.5 km/hr
-> Charlie wants to run for 1.5 hours
6.5km + 6.5km/2
= 6.5 km + 3.25km
= 9.75 km
The word "gravity" belongs between "of" and "on".
The sun is the mother star of the solar system, which only emits light to half of the planet, while the other part is always dark.
The sun emits light towards the earth, which dominates all life on earth. The movements of the Moon around the Earth and of the Earth around the Sun are complex. Movements of rotation around their own axes are superimposed on movements of orbital translation. The Earth and the Moon rotate around their own axes: This is rotation.
The distance an object falls from rest through gravity is
D = (1/2) (g) (t²)
Distance = (1/2 acceleration of gravity) x (square of the falling time)
We want to see how the time will be affected
if ' D ' doesn't change but ' g ' does.
So I'm going to start by rearranging the equation
to solve for ' t '. D = (1/2) (g) (t²)
Multiply each side by 2 : 2 D = g t²
Divide each side by ' g ' : 2 D/g = t²
Square root each side: t = √ (2D/g)
Looking at the equation now, we can see what happens to ' t ' when only ' g ' changes:
-- ' g ' is in the denominator; so bigger 'g' ==> shorter 't'
and smaller 'g' ==> longer 't' .--
They don't change by the same factor, because 1/g is inside the square root. So 't' changes the same amount as √1/g does.
Gravity on the surface of the moon is roughly 1/6 the value of gravity on the surface of the Earth.
So we expect ' t ' to increase by √6 = 2.45 times.
It would take the same bottle (2.45 x 4.95) = 12.12 seconds to roll off the same window sill and fall 120 meters down to the surface of the Moon.
The net force = sum of all forces acting on the body
If we take left side as -ve and right side as +ve,
then,
The net force here would be equal to,
10N + (- 3N)
= 7N.
Therefore, a net force of +7N ( + indicates it's moving towards right) is acting on the book of mass 2kg.