Answer:
Light waves carry energy parallel to the motion of the wave, while sound waves carry energy perpendicular to it. Sound waves carry energy parallel to the motion of the wave, while light waves carry energy perpendicular to it.
Explanation:
Answer:
Lifting force, F = 21240 N
Explanation:
It is given that,
Mass of the helicopter, m = 1800 kg
It rises with an upward acceleration of 2 m/s². We need to find the lifting force supplied by its rotating blades. It is given by :
F = mg + ma
Where
mg is its weight
and "ma" is an additional acceleration when it is moving upwards.
So, 
F = 21240 N
So, the lifting force supplied by its rotating blades is 21240 N. Hence, this is the required solution.
Answer:
a) The minimum thickness of the oil slick at the spot is 313 nm
b) the minimum thickness be now will be 125 nm
Explanation:
Given the data in the question;
a) The index of refraction of the oil is 1.20. What is the minimum thickness of the oil slick at that spot?
t
= λ/2n
given that; wavelength λ = 750 nm and index of refraction of the oil n = 1.20
we substitute
t
= 750 / 2(1.20)
t
= 750 / 2.4
t
= 312.5 ≈ 313 nm
Therefore, The minimum thickness of the oil slick at the spot is 313 nm
b)
Suppose the oil had an index of refraction of 1.50. What would the minimum thickness be now?
minimum thickness of the oil slick at the spot will be;
t
= λ/4n
given that; wavelength λ = 750 nm and index of refraction of the oil n = 1.50
we substitute
t
= 750 / 4(1.50)
t
= 750 / 6
t
= 125 nm
Therefore, the minimum thickness be now will be 125 nm
Answer:
3.258 m/s
Explanation:
k = Spring constant = 263 N/m (Assumed, as it is not given)
x = Displacement of spring = 0.7 m (Assumed, as it is not given)
= Coefficient of friction = 0.4
Energy stored in spring is given by

As the energy in the system is conserved we have

The speed of the 8 kg block just before collision is 3.258 m/s
The answer is well log data, it is a detailed log of information taken from a borehole which geologist used to study geological formations of the earth's layer taken from samples returned from the borehole which was dugged.