By definition, speed is the integral of acceleration with respect to time.
We have then:

As the acceleration is constant, then integrating we have:

Where,
vo: constant of integration that corresponds to the initial velocity
We observe then that the speed varies linearly when the acceleration is constant
.
Therefore, for constant acceleration, the velocity is changing.
Answer:
an object with a constant acceleration always have:
A. changing velocity
Answer:

Explanation:
The acceleration of an object is the rate of change of velocity of the object.
Mathematically, it is calculated as:

where
u is the initial velocity
v is the final velocity
t is the time taken for the velocity to change from u to v
Acceleration is a vector, so it is important to also take into account the direction of the velocity.
For the particle in this problem, we have:
u = +48 m/s is the initial velocity (positive direction)
v = -92 m/s is the final velocity (negative direction)
t = 4.5 s is the time interval
Therefore, the average acceleration is

They are called stem cells. This cells are undifferentiated which means it can specialize in other types when it receives the right stimuli. They can divide through mitoses and become more stem cell or become a bone, muscle, blood cell, etc.
They can have 2 origins: embryos or some human tissue; their function is to regenerate or substitute damaged cells
Answer:
Energy required = 3169.34 Joules.
Explanation:
The quantity of energy (Q) required can be determined by;
Q = mcΔθ
Where: m is the mass, c is the specific heat and Δθ is the change in temperature.
But, m = 96.7 kg, c = 0.874 J/(kg
),
=
and
=
.
So that,
Q = mc(
-
)
= 96.7 x 0.874 x (
-
)
= 96.7 x 0.874 x 37.5
= 3169.3425
Q = 3169.34
= 3.2 KJ
The amount of energy required is 3169.34 Joules.