Rubber is not very good at conducting electricity. This is because rubber makes it difficult for electrons to flow between atoms, due to rubber having tightly packed electrons. Materials like rubber are known as insulators.
Conductors are the opposite, they conduct electricity very well. Examples of conductors are metal, which is why metal is used in wires.
Since rubber is not a conductor, answer choice B can be eliminated. This can also eliminate answer choice D, since insulators like rubber don't allow electricity to easily flow.
While rubber gloves keep our hands dry, there are no liquids involved in this experiment and this is not the main reason for using rubber gloves. This eliminates answer choice C.
The answer is A. rubber gloves are insulators.
The teacher instructs the students to wear rubber gloves to prevent them from getting an electric shock.
Answer:
A. rubber gloves are insulators
Hope this helps!
<u>Answer:</u> The molar mass of unknown gas is 367.12 g/mol
<u>Explanation:</u>
Rate of a gas is defined as the amount of gas displaced in a given amount of time.

To calculate the rate of diffusion of gas, we use Graham's Law.
This law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows the equation:

So,

We are given:
Volume of unknown gas (X) = 1.0 L
Volume of oxygen gas = 1.0 L
Time taken by unknown gas (X) = 105 seconds
Time taken by oxygen gas = 31 seconds
Molar mass of oxygen gas = 32 g/mol
Molar mass of unknown gas (X) = ? g/mol
Putting values in above equation, we get:

Hence, the molar mass of unknown gas is 367.12 g/mol
Answer:
The answer is 0.01 M
Explanation:
The problem is solved by applying the expression for ionic product of water as follows:
Kw = [H₃O⁺] [OH⁻]
Where Kw is the ionic product of water and it is 1.10⁻¹⁴ M at⁴ 25ºC. As [OH⁻]= 1.10⁻¹² M, [H₃O⁺] will be:
[H₃O⁺]= Kw/ [OH⁻]= 1.10⁻¹⁴M/1.10⁻¹²M= 0.01 M
Answer:
Cilindros graduados
Explanation:
Son una herramienta de medición primaria para el volumen de un líquido, y tiene varias marcas hacia arriba y hacia abajo a lo largo del contenedor con incrementos específicos. Los cilindros graduados vienen en muchos tamaños; entre más pequeños sean de diámetro, más específicas serán las mediciones de volumen. Al leer el volumen de un cilindro graduado, notarán que el líquido parece tener una muesca; el líquido alrededor de los bordes será más alto que el líquido en el centro, inclinándose hacia abajo como los lados de un trampolín cuando alguien está parado en el medio. Esto se llama el menisco. Alineen el punto más bajo del menisco con la marca más cercana, manteniendo el nivel del cilindro para leer correctamente el volumen.