The sum of the maximum voltages across each element in a series RLC circuit is usually greater than the maximum applied voltage because voltages are added by vector addition.
<h3>What is the Kichoff's loop rule?</h3>
Kirchhoff's loop rule states that the algebraic sum of potential differences, as well as the voltage supplied by the voltage sources and resistances, in any loop must be equal to zero.
In a series RLCcircuit, the voltages are not added by scalar addition but by vector addition.
Kirchhoff's loop rule is not violated since the voltages across different elements in the circuit are not at their maximum values.
Therefore, the sum of the maximum voltages across each element in a series RLC circuit is usually greater than the maximum applied voltage because voltages are added by vector addition.
Learn more about Kichoff's loop rule at: https://brainly.in/question/35360816
#SPJ1
<span>Because P = W ÷ t, and W = F*t, you can substitute (W) for (F*t). Then substitute (F) for (m*a). This will leave you with P = (m*a*d)/t. Since you need velocity, youd want to solve for a so you can use v = a*t. a = (P*t)/(m*d) therefore, substituting a in v = a*t, v = (P*t*t)/(m*d)</span>
Answer:
610 meters.
Explanation:
Because Jim released the accelerator, the truck started to slow down, so the friction force will eventually stop the truck.
the kinetic energy of the truck just after Jim released the pedal is:

The work done by the friction force is given by:

Answer:
A. polymerization
Explanation:
Synthetic plastics are made by linking many simple carbon molecules together to form much larger molecules. This process is called polymerization.
Synthetic or artifical giant molecules consists of synthetic polymers such as plastics, elastomers etc. They are made up of simple monomers which links to form the complex and giant structure.
Monomers are the simplest unit of polymers. Polymers have very great sizes. The size mkaes their structure quite complex. This makes the molecules more disposed in a regular pattern with respect to one another.
The complexity of structure and the attendant effects accounts for the properties and uses that makes synthetic molecules very unique. For example, plastics can be extruded as sheets, pipes and or moulded into other objects.
The correct answer as the first one above !