Answer:
C. Y & Z
Explanation:
V, W are imaginary metals here because their valence electrons are typically less than 4. X, Y, Z are non-metals and have higher valence electrons. Here, if V or W bind with X, Y, or Z we make ionic bond (because metal + non metal = ionic). But, if X binds with Y or Z or any combinations of any two of the three non-metals results in covalent bond (non metal + non metal = covalent).
Thus, Y and Z make covalent.
Answer:
Your answer would be D, they are all non-renewable energy sources. Hope this helps!
Compared to carbon nanotube, carbon nanofiber (CNF) is a unique quasi-one-dimensional nanostructure with a lot of edges and flaws (CNT). Additionally, their low cost and wide availability make them a valuable nanomaterial for upcoming technology.
<h3>what are the development and characterization of Carbon Nanofiber for Additively Manufactured Piezo resistive Sensors?</h3>
In accordance with the semiconductor material's piezo resistive effect, diffusion resistance is used to manufacture piezo resistive sensors on substrates of semiconductor materials. The diffusion resistor is connected in the substrate in the form of a bridge, allowing the substrate to be employed directly as a measuring sensor element.
- Carbon nanofiber/polylactic acid filament for fused filament fabrication (FFF) and additive manufacturing (AM) strain sensors was studied for the effects of production factors.
- To investigate the effects of CNF weight fraction, extrusion temperature, and number of extrusions on sensor performance, a design of experiments (DOE) approach was used. In the initial extrusion, dry melt mixing was used to combine CNFs and powdered PLA material.
- Through the DOE procedure, it was discovered that extruding CNF/PLA material for two complete extrusions at 185 °C resulted in material with material with material with dramatically improved electrical characteristics in comparison to unmodified material.
- Piezoresistive dog-bone shaped sensors were made using the best manufacturing technique using three different sizes of 5.0, 7.5, and 10.0 wt% CNF/PLA filament.
To know more about Carbon nanofiber/polylactic acid check here:brainly.com/question/15913091
#SPJ4
The answer to this question would be A. Energy is released.
When a chemical bond is a form, the bond will either suck up energy or produce energy. So, to be precise the energy is not always released but also can be absorbed. In this case, the energy released number will be a minus.
Options B and C is definitely wrong since the bond is formed by an electron, it won't affects neutron/proton.
Option D might be true since the product is made of 2 or more atoms then it would seem larger. But the size of the actual atom won't be increased.