<span>0.0687 m
The balanced equation is
BaCl2 + Na2SO4 ==> BaSO4 + 2 NaCl
Looking at the equation, it indicates that there's a 1 to 1 ratio of BaCl2 and Na2SO4 in the reaction. So the number of moles of each will be equal. Now calculate the number of moles of Na2SO4 we had. Start by looking up atomic weights.
Atomic weight sodium = 22.989769
Atomic weight sulfur = 32.065
Atomic weight oxygen = 15.999
Molar mass Na2SO4 = 2 * 22.989769 + 32.065 + 4 * 15.999 = 142.040538 g/mol
Moles Na2SO4 = 0.554 g / 142.040538 g/mol = 0.003900295 mol
Molarity is defined as moles per liter, so let's do the division.
0.003900295 mol / 0.0568 l = 0.068667165 mol/l = 0.068667165 m
Rounding to 3 significant figures gives 0.0687 m</span>
The total pressure of the mixture of gases is equal to the sum of the pressure of each gas as if it is alone in the container. The partial pressure of a component of the mixture is said to be equal to the product of the total pressure and the mole fraction of the component in the mixture.
Partial pressure of hydrogen gas = 1.24 atm x .25 = 0.31 atm
Partial pressure of the remaining = 1.24 atm x (1-.25) = 0.93 atm
Answer:
200 watts
Explanation:
First we have to find total work:
W =F(d)
W = 400J
Then plug that answer into the Power formula.
P = W/(t_f-t-i)
P = 400/2s
P = 200 W
H30 are also known as hydroniums