ENERGY WOULD BE RELALISED, MEANING BONDS ARE BEING BROKEN, SO IT IS AN EXOTHERMIC REACTION
The mass of solute per 100 mL of solution is abbreviated as (m/v). Mass is not technically the same thing as weight, but the abbreviation (w/v) is also common. 262 grams of sucrose are needed to make 655 mL of a 40.0% (w/v) sucrose solution
<h3>Define Solute</h3>
A solute is a material that dissolves in a solution. The amount of solvent present in fluid solutions is greater than the amount of solute. The two most common examples of solutions in daily life are salt and water. Salt is the solute because it dissolves in water.
<h3>forms of ratios for product concentration or yield:-</h3>
- w/v:- Weight by volume or weight per volume are the terms used. Any solid compound's concentration in a liquid can be calculated using it. It is measurable in gm/ml.
- Weight by weight ratio is referred to as w/w.It is employed to determine the final yield of the compound obtained from the starting compound. as in —mg/—gm.
It provides the real yield of the substance or item.
- Volume/volume. It is used to specify a liquid's composition or percent in a liquid compound.
using w/v we can calculate the weight of sucrose:-
40.0% means 40 g sucrose/ 100 g solution
40.0g sucrose x (655/100)=grams of sucrose
262 grams of sucrose are needed to make 655 mL of a 40.0% (w/v) sucrose solution.
Learn more about Solute here:-
brainly.com/question/14397121
#SPJ4
I believe the answer is B??????????? Hope this helps
~Queensupreme
Answer:
0.85 mole of PBr3.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
3Br2 + 2P —> 2PBr3
From the balanced equation above,
3 moles of Br2 reacted to produce 2 moles of PBr3.
Therefore, 1.27 moles of Br2 will react to produce = (1.27 x 2)/ 3 = 0.85 mole of PBr3.
Therefore, 0.85 mole of PBr3 is produced by the reaction.
Answer:
The primary function of chemical nomenclature is to ensure that a spoken or written chemical name leaves no ambiguity concerning which chemical compound the name refers to: each chemical name should refer to a single sub