Answer:
Sodium chloride is formed from a single replacement reaction.
Explanation:
Answer:
1.78 atm
Explanation:
From the question given above, the following data were obtained:
Mass of Cl = 355 g
Molecular weight of Cl = 70.9 g/mol
Volume (V) = 70.0 L
Temperature (T) = 30 °C
Pressure (P) =?
Next, we shall determine the number of mole in 355 g of chlorine (Cl). This can be obtained as follow:
Mass of Cl = 355 g
Molecular weight of Cl = 70.9 g/mol
Mole of Cl =.?
Mole = mass /molecular weight
Mole of Cl = 355 /70.9
Mole of Cl = 5 moles
Next, we shall convert 30 °C to Kelvin temperature. This can be obtained as follow:
T(K) = T(°C) + 273
Temperature (T) = 30 °C
Temperature (T) = 30 °C + 273 = 303 K
Finally, we shall determine the pressure of the gas as illustrated below:
Volume (V) = 70.0 L
Number of mole (n) = 5 moles
Temperature (T) = 303 K
Gas constant (R) = 0.0821 atm.L/Kmol
Pressure (P) =?
PV = nRT
P × 70 = 5 × 0.0821 × 303
P × 70 = 124.3815
Divide both side by 70
P = 124.3815 / 70
P = 1.78 atm
Therefore, the pressure of the gas is 1.78 atm
Answer:
4
10
Explanation:
The reaction equation is given as;
Ca(OH)₂ → Ca²⁺ + 2OH⁻
Concentration of Ca(OH)₂ = 5 x 10⁻⁵M
Unknown:
pOH of the solution = ?
pH of the solution = ?
Solution:
Solve for the pOH of this solution using the expression below obtained from the ionic product of water;
pOH = ⁻log₁₀[OH⁻]
Ca(OH)₂ → Ca²⁺ + 2OH⁻
1moldm⁻³ 1moldm⁻³ 2 x 1moldm⁻³
5 x 10⁻⁵moldm⁻³ 5 x 10⁻⁵moldm⁻³ 2( 5 x 10⁻⁵moldm⁻³ )
1 x 10⁻⁴moldm⁻³
Therefore;
pOH = -log₁₀ 1 x 10⁻⁴ = 4
Since
pOH + pH = 14
pH = 14 - 4 = 10
Answer:
A. A. it will shrink.
A. slow down
.
Explanation:
Hello there!
In this case, according to the gas laws, it is possible to answer to this questions:
1. Here, it is required to study a volume-temperature relationship by means of the Charles' law which states that the volume decreases as temperature does; for that reason, when dunking the balloon into the cold water, one can notice A. it will shrink.
2. Here, according to the kinetic molecular theory, which states that higher temperatures provide higher amounts of energy to the molecules to move faster as they gain thermal energy; it is possible to infer that when a sample of gas is cooled, the particles of A. slow down as they lose thermal energy.
Best regards!