Answer:
axial V = 0
equatorial V = k q 2a / (x² -a²), V = k q 2x / (a² -x²)
Explanation:
A dipole is a system formed by two charges of equal magnitude, but different sign, separated by a distance 2a; let's look for the electrical potential in an axial line
V = k (q / √(a² + y²) - q /√ (a² + y²))
V = 0
the potential on the equator
we place the positive charge to the left and perform the calculation for a point outside the dipole
V = k (q / (x-a) - q / (x + a))
V = k q 2a / (x² -a²)
we perform the calculation for a point between the dipo charges
V = k (q / (a-x) - q / (a + x))
V = k q 2x / (a² -x²)
Answer:
Power = 251.9 Watts
Explanation:
Power = Work Done / Time taken
Power = 3441 / 13.66
Power = 251.9 Joule / Second
Power = 251.9 Watts
Answer:
d. 100.0 J
Explanation:
To solve this problem we must use the theorem of work and energy conservation. This tells us that the mechanical energy in the final state is equal to the mechanical energy in the initial state plus the work done on a body. In this way we come to the following equation:
E₁ + W₁₋₂ = E₂
where:
E₁ = mechanical energy at state 1. [J] (units of Joules)
E₂ = mechanical energy at state 2. [J]
W₁₋₂ = work done from 1 to 2 [J]
We have to remember that mechanical energy is defined as the sum of potential energy plus kinetic energy.
The energy in the initial state is zero, since there is no movement of the hockey puck before imparting force. E₁ = 0.
The Work on the hockey puck is equal to:
W₁₋₂ = 100 [J]
100 = E₂
Since the ice rink is horizontal there is no potential energy, there is only kinetic energy
Ek = 100 [J]
It can be said that the work applied on the hockey puck turns into kinetic energy
(a) Determine the circumference of the Earth through the equation,
C = 2πr
Substituting the known values,
C = 2π(1.50 x 10¹¹ m)
C = 9.424 x 10¹¹ m
Then, divide the answer by time which is given to a year which is equal to 31536000 s.
orbital speed = (9.424 x 10¹¹ m)/31536000 s
orbital speed = 29883.307 m/s
Hence, the orbital speed of the Earth is ~29883.307 m/s.
(b) The mass of the sun is ~1.9891 x 10³⁰ kg.
Answer:
The body is said to be in static equilibrium if the net force acting on a body at rest is zero.As the net force is zero,the body will not undergo motion.
Explanation: