To solve this problem it is necessary to apply the kinematic equations of motion and Hook's law.
By Hook's law we know that force is defined as,

Where,
k = spring constant
x = Displacement change
PART A) For the case of the spring constant we can use the above equation and clear k so that




Therefore the spring constant for each one is 11876.92/2 = 5933.46N/m
PART B) In the case of speed we can obtain it through the period, which is given by

Re-arrange to find \omega,



Then through angular kinematic equations where angular velocity is given as a function of mass and spring constant we have to




Therefore the mass of the trailer is 4093.55Kg
PART C) The frequency by definition is inversely to the period therefore



Therefore the frequency of the oscillation is 0.4672 Hz
PART D) The time it takes to make the route 10 times would be 10 times the period, that is



Therefore the total time it takes for the trailer to bounce up and down 10 times is 21.4s
Answer:
My mom always told me he was just there
Explanation:
The wavelength decreases to roughly half.
(The frequency roughly doubles.)
Answer:
Force of gravity
Explanation:
when the force of gravity pulls large gas clouds and dust together, the concentrated gas clouds and dust collapse under the force of gravity forming stars.
There are many galaxies out there in the universe, each galaxy has its own solar systems, stars, and collection of gas and dust. We (earth) belong to the Milky Way galaxy, our galaxy got this name from the Romans. They called in 'via lactea', which directly translates to 'road of milk' because of the milky patch they saw at night.
Answer:
a) the frequency of the wave is 0.2 Hz
b) the speed of the wave 4 m/s
Explanation:
Given that;
time period = to complete one cycle t = 5 sec
frequency f = 1/t
frequency f = 1 / 5sec
f = 0.2 Hz
Therefore the frequency of the wave is 0.2 Hz
b)
speed of wave V = λf
given that our wavelength is 20.0 m
we substitute
speed of wave V = 20.0 × 0.2
speed of wave V = 4 m/s
Therefore, the speed of the wave 4 m/s