Answer:
sensory adaption
Explanation:
Sensory adaption is the phenomenon where the intensity of a stimulus experienced by an organism decreases after a certain amount of exposure to the stimulus. This happens in order for us to pay attention to other stimulus.
When you are driving with the windows down and listening to music you are subjected to a lot of stimuli. Here, most of our attention needs to be on driving. So, our brain drowns all the other unneccessary stimuli like the music.
When you enter the car again where the other stimuli which were present while driving are absent, all your attention is diverted to the music. So, your're ears hurt.
The potential difference across the parallel plate capacitor is 2.26 millivolts
<h3>Capacitance of a parallel plate capacitor</h3>
The capacitance of the parallel plate capacitor is given by C = ε₀A/d where
- ε₀ = permittivity of free space = 8.854 × 10⁻¹² F/m,
- A = area of plates and
- d = distance between plates = 4.0 mm = 4.0 × 10⁻³ m.
<h3>Charge on plates</h3>
Also, the surface charge on the capacitor Q = σA where
- σ = charge density = 5.0 pC/m² = 5.0 × 10⁻¹² C/m² and
- a = area of plates.
<h3>
The potential difference across the parallel plate capacitor</h3>
The potential difference across the parallel plate capacitor is V = Q/C
= σA ÷ ε₀A/d
= σd/ε₀
Substituting the values of the variables into the equation, we have
V = σd/ε₀
V = 5.0 × 10⁻¹² C/m² × 4.0 × 10⁻³ m/8.854 × 10⁻¹² F/m
V = 20.0 C/m × 10⁻³/8.854 F/m
V = 2.26 × 10⁻³ Volts
V = 2.26 millivolts
So, the potential difference across the parallel plate capacitor is 2.26 millivolts
Learn more about potential difference across parallel plate capacitor here:
brainly.com/question/12993474
Answer:
can't tell if this is question, it is not written correctly
Explanation:
Electrical conductivity is the measure of a material's ability to allow the transport of an electric charge. Its SI is the siemens per meter, (A2s3m−3kg−1) (named after Werner von Siemens) or, more simply, Sm−1. It is the ratio of the current density to the electric field strength.
Answer:
<em>The 150 lb woman at 30 mph would experience the greatest force of impact in a sudden collision.</em>
Explanation:
<u>Momentum
</u>
The force of impact exerted on an moving object that suddenly stops or changes its movement is measures by the physics magnitude called Impulse, which can be computed with the formula

Where F is the force and t is the time that force acts to produce the impact on the object. The impulse is also defined as the change in the momentum of the object:

Or equivalently

The question describes four situations where different persons and object suffer impact that make them stop from their moving state. Thus
and the impulse is

We are only interested in the relative magnitudes of each case, so we won't consider the sign in the calculations
Case 1: A 200 lb. man traveling 20 mph

Case 2: A 150 lb. woman at 30 mph

Case 3: A 35 lb. infant at 75 mph

Case 4: A 75 lb. child at 55 mph

By comparing the results, we can see that the 150 lb woman at 30 mph would experience the greatest force of impact in a sudden collision.