1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inga [223]
3 years ago
6

A car engine applies a force of 65,000 N, how much work is done by the engine as it pushed a car a distance of 75 m?

Physics
1 answer:
kupik [55]3 years ago
3 0

Answer:

workdone = force \times distance \\  = 65000 \times 75 \\  = 4,875,000 \: J

You might be interested in
Write the terms involved in s=ut+1\2​
cricket20 [7]

s = displacement; u = initial velocity; t = time of motion

7 0
3 years ago
The electric current in a copper wire is composed of what
Tanzania [10]

Answer:

A copper wire current consists of electrons appropriately called conduction electrons.

Explanation:

This answer came from quizlet.com. I hope that this helps you and good luck!

8 0
3 years ago
The pressure on a fluid at rest in a pipe increases by 20 Pa. How does this change in pressure affect the pressure on the fluid
timofeeve [1]

Answer:The change in pressure can affect the pressure on the fluid through the radius and diameter of the pipe.

r^² x Pressure (pa).

Therefore the narrower the other part of the pile, the greater the pressure on the fluid at such part, the wider in other part the lesser the pressure on the fluid at this part.

Explanation:

4 0
3 years ago
A steel beam of mass 1975 kg and length 3 m is attached to the wall with a pin that can rotate freely on its right side. A cable
Nuetrik [128]

Answer:

a) 29062.125 N·m

b) 0 N·m

c) Torque, due \ to \ tension =L\cdot Tsin\theta = \frac{M\cdot L\cdot g}{2}

d) T = 11186.02 N

Explanation:

We are given

Beam mass = 1975 kg

Beam length = 3 m

Cable angle = 60° above horizontal

a) We have the formula for torque given as follows;

Torque about the pin = Force × Perpendicular distance of force from pin

Where the force = Force due to gravity or weight, we have

Weight = Mass × Acceleration due to gravity = 1975 × 9.81 = 19374.75 N

Point of action of force = Midpoint for a uniform beam = length/2

∴ Point of action of force = 3/2 = 1.5 m

Torque due to gravity = 19374.75 N × 1.5 m = 29062.125 N·m

b) Torque about the pinned end due to the contact forces between the pin and the beam is given by the following relation;

Since the distance from pin to the contact forces between the pin and the beam is 0, the torque which is force multiplied by perpendicular distance is also 0 N·m

c) To find the expression for the tension force, T we find the sum of the moment forces about the pin as follows

Sum of moments about p is given as follows

∑M = 0 gives;

T·sin(θ) × L= M×L/2×g

Therefore torque due to tension is given by the following expression

Torque, due \ to \ tension =L\cdot Tsin\theta = \frac{M\cdot L\cdot g}{2}

d) Plugging in the values in the torque due to tension equation, we have;

3\times Tsin60 = \frac{1975\times 3\times 9.81}{2} = 29062.125

Therefore, we make the tension force, T the subject of the formula hence

T= \frac{29062.125}{3 \times sin(60)} = 11186.02 N

8 0
3 years ago
For a freely falling object weighing 3 kg : A. what is the object's velocity 2 s after it's release. B. What is the kinetic ener
Fed [463]

A) 19.6 m/s (downward)

B) 576 J

C) 19.6 m

D) Velocity: not affected, kinetic energy: doubles, distance: not affected

Explanation:

A)

An object in free fall is acted upon one force only, which is the force of gravity.

Therefore, the motion of an object in free fall is a uniformly accelerated motion (constant acceleration). Therefore, we can find its velocity by applying the following suvat equation:

v=u+at

where:

v is the velocity at time t

u is the initial velocity

a=g=9.8 m/s^2 is the acceleration due to gravity

For the object in this problem, taking downward as positive direction, we have:

u=0 (the object starts from rest)

a=9.8 m/s^2

Therefore, the velocity after

t = 2 s

is:

v=0+(9.8)(2)=19.6 m/s (downward)

B)

The kinetic energy of an object is the energy possessed by the object due to its motion.

It can be calculated using the equation:

KE=\frac{1}{2}mv^2

where

m is the mass of the object

v is the speed of the object

For the object in the problem, at t = 2 s, we have:

m = 3 kg (mass of the object)

v = 19.6 m/s (speed of the object)

Therefore, its kinetic energy is:

KE=\frac{1}{2}(3)(19.6)^2=576 J

C)

In order to find how far the object has fallen, we can use another suvat equation for uniformly accelerated motion:

s=ut+\frac{1}{2}at^2

where

s is the distance covered

u is the initial velocity

t is the time

a is the acceleration

For the object in free fall in this problem, we have:

u = 0 (it starts from rest)

a=g=9.8 m/s^2 (acceleration of gravity)

t = 2 s (time)

Therefore, the distance covered is

s=0+\frac{1}{2}(9.8)(2)^2=19.6 m

D)

Here the mass of the object has been doubled, so now it is

M = 6 kg

For part A) (final velocity of the object), we notice that the equation that we use to find the velocity does not depend at all on the mass of the object. This means that the value of the final velocity is not affected.

For part B) (kinetic energy), we notice that the kinetic energy depends on the mass, so in this case this value has changed.

The new kinetic energy is

KE'=\frac{1}{2}Mv^2

where

M = 6 kg is the new mass

v = 19.6 m/s is the speed

Substituting,

KE'=\frac{1}{2}(6)(19.6)^2=1152 J

And we see that this value is twice the value calculated in part A: so, the kinetic energy has doubled.

Finally, for part c) (distance covered), we see that its equation does not depend on the mass, therefore this value is not affected.

5 0
3 years ago
Other questions:
  • Mountain ranges and belts are built through the process called what
    12·1 answer
  • Which of the following changes occurs naturally in a system over time?
    14·1 answer
  • A curve has a radius of 50 meters and is banked 5 degrees. The road is covered with ice and is frictionless. What is the maximum
    12·1 answer
  • If the current through a 20-ω resistor is 8.0 a , how much energy is dissipated by the resistor in 1.0 h ?
    7·1 answer
  • To clean the outside of your house you rent a small high-pressure water sprayer. The sprayer’s pump delivers slow-moving water a
    10·1 answer
  • The speed at which a wave is transmitted depends on_____
    10·1 answer
  • The lift does 3000 J of work in 5 seconds. What is the power of the lift?
    8·1 answer
  • How does the friction get affected by the nature of surface?
    13·1 answer
  • C) 12g/cm d) 0.2g/cm
    5·1 answer
  • In the photo below, astronaut Alan Bean works at the Apollo 12 lander. Describe the horizon and the surface you see. What kind o
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!