Answer:
83.33 C
Explanation:
T1 = 111 C, m1 = 2m
T2 = 28 C, m2 = m
c = 0.387 J/gK
Let the final temperature inside the calorimeter of T.
Use the principle of calorimetery
heat lost by hot body = heat gained by cold body
m1 x c x (T1 - T) = m2 x c x (T - T2)
2m x c X (111 - T) = m x c x (T - 28)
2 (111 - T) = (T - 28)
222 - 2T = T - 28
3T = 250
T = 83.33 C
Thus, the final temperature inside calorimeter is 83.33 C.
Answer:
They can generate potentials spontaneously because they have Unstable Membrane Potentials.
Explanation:
Autorythmic cells or Pacemaker cells are cells that provide Action potentials (electrical impulses) that starts off the cardiac cycle.
N:B This action potential is created spontaneously.
To explain further, the heart originate in specialized cardiac muscle cells, called autorhythmic cells, that can excite themselves and therefore are able to generate an action potential without external stimulation by nerve cells. And this sets the cardiac cycle i
(Pumping of the heart) into motion. (The pace maker potential)
The Autorhythmic cells create an action potential spontaneously
And this is possible because they have an UNSTABLE RESTING POTENTIAL that is continuously depolarizing, while it drifts slowly toward threshold. As Na+ ions enter the cell, the inner surface of the plasma membrane becomes less negative gradually, thus generating the pacemaker potential.
Answer:magnitude -5; angle 160°
Explanation:
Vector A is described as having magnitude 5 and angle -20°.
To get an equivalent vector, we either leave the magnitude at 5 and add 360° to the angle, or we reverse the magnitude to -5 and add 180° to the angle.
5 @ -20° = 5 @ 340°
5 @ -20° = -5 @ 160°
The third one is the answer.
A mercury filled balloon would fall faster then water. Mercury is heavier.