This is a tricky question. All that matters are ratios of percentages, not percentages themselves. So no one should directly compare 27.2 with 42.9. We must and shall compare the ratios (27.2 to 72.8) and (42.9 to 57.1).
Take them both down to 1 to and see what happens.
Working out the formulas knowing atomic masses is a bit beside the point; this is how people first DISCOVERED the idea of atomic mass.
A
Carbon Oxygen
27.2g 72.8g (100-27.2)
Moles 27.2/12 72.8/16
2.27 4.55
Ratio 1 2
Do the same with the other
Answer:
A) It tends to increase from top to bottom of a group
Answer: Option (E) is the correct answer.
Explanation:
Since, the conductor is hollow which means that it is opened on both the ends. Hence, when a small uncharged metal ball is passed through it with the help of a silk thread then due to the presence of this insulating thread the ball will not come directly in contact with the charged rod.
As a result, there will occur no formation of opposite charge on the metal ball. Therefore, the ball will remain uncharged in nature.
Thus, we can conclude that after the given ball is removed, it will have no appreciable charge.
I am unsure if this is correct, but this might be the whole section:
- The top of the syringe is a circle. You need to compute its area for use in later computations of pressure values. Start by using a ruler to measure the diameter. Estimate to the nearest 0.01 cm. <em>Answer: </em><em>3.60 </em><em>cm</em>
- Divide by two to find the radius. Maintain significant figures. <em>Answer: </em><em>1.80 </em><em>cm</em>
- Substitute the radius into the formula A = πr² to find the area of the top of the syringe. Maintain significant figures. <em>Answer: </em><em>10.2 </em><em>cm²</em>
THey can move around each other instead of just vibrating in place like solid prticles.