1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ratling [72]
3 years ago
12

You drop a stone down a well that is 19.60 m deep. How long is it before you hear the splash? The speed of sound in air is 343 m

/s and air resistance is negligible.
Physics
1 answer:
ki77a [65]3 years ago
3 0

So, the time needed before you hear the splash is approximately <u>2.06 s</u>.

<h3>Introduction</h3>

Hi ! In this question, I will help you. This question uses two principles, namely the time for an object to fall freely and the time for sound to propagate through air. When moving in free fall, the time required can be calculated by the following equation:

\sf{h = \frac{1}{2} \cdot g \cdot t^2}

\sf{\frac{2 \cdot h}{g} = t^2}

\boxed{\sf{\bold{t = \sqrt{\frac{2 \cdot h}{g}}}}}

With the following condition :

  • t = interval of the time (s)
  • h = height or any other displacement at vertical line (m)
  • g = acceleration of the gravity (m/s²)

Meanwhile, for sound propagation (without sound reflection), time propagates is the same as the quotient of distance by time. Or it can be formulated by :

\boxed{\sf{\bold{t = \frac{s}{v}}}}

With the following condition :

  • t = interval of the time (s)
  • s = shift or displacement (m)
  • v = velocity (m/s)

<h3>Problem Solving</h3>

We know that :

  • h = height or any other displacement at vertical line = 19.6 m
  • g = acceleration of the gravity = 9.8 m/s²
  • v = velocity = 343 m/s

What was asked :

  • \sf{\sum t} = ... s

Step by step :

  • Find the time when the object falls freely until it hits the water. Save value as \sf{\bold{t_1}}

\sf{t_1 = \sqrt{\frac{2 \cdot h}{g}}}

\sf{t_1 = \sqrt{\frac{2 \cdot \cancel{19.6} \:_2}{\cancel{9.8}}}}

\sf{t_1 = \sqrt{4}}

\sf{\bold{t_1 = 2 \: s}}

  • Find the time when the sound propagate through air. Save value as \sf{\bold{t_2}}

\sf{t_2 = \frac{h}{v}}

\sf{t_2 = \frac{19.6}{343}}

\sf{\bold{t_2 \approx 0.06 \: s}}

  • Find the total time \sf{\bold{\sum t}}

\sf{\sum t = t_1 + t_2}

\sf{\sum t \approx 2 + 0.06}

\boxed{\sf{\sum t \approx 2.06}}

<h3>Conclusion</h3>

So, the time needed before you hear the splash is approximately 2.06 s.

You might be interested in
How do fluids excert pressure​
Artyom0805 [142]

All fluids exert pressure like the air inside a tire. The particles of fluids are constantly moving in all directions at random. As the particles move, they keep bumping into each other and into anything else in their path. These collisions cause pressure, and the pressure is exerted equally in all directions.

5 0
3 years ago
How many joules of heat would be required to heat 0.5 kg of aluminum by 2 kelvin
melisa1 [442]
0.902 joules of energy
4 0
3 years ago
A young woman with normal distant vision has a 10.0% ability to accommodate (that is, increase) the lens strength (a.k.a, lens p
Kipish [7]

Answer:

20.0 cm

Explanation:

Here is the complete question

The normal power for distant vision is 50.0 D. A young woman with normal distant vision has a 10.0% ability to accommodate (that is, increase) the power of her eyes. What is the closest object she can see clearly?

Solution

Now, the power of a lens, P = 1/f = 1/u + 1/v where f = focal length of lens, u = object distance from eye lens and v = image distance from eye lens.

Given that we require a 10 % increase in the power of the lens to accommodate the image she sees clearly, the new power P' = 50.0 D + 10/100 × 50 = 50.0 D + 5 D = 55.0 D.

Also, since the object is seen clearly, the distance from the eye lens to the retina equals the distance between the image and the eye lens. So, v = 2.00 cm = 0.02 m

Now, P' = 1/u + 1/v

1/u = P'- 1/v

1/u = 55.0 D - 1/0.02 m

1/u = 55.0 m⁻¹ - 1/0.02 m

1/u = 55.0 m⁻¹ - 50.0 m⁻¹

1/u = 5.0 m⁻¹

u = 1/5.0 m⁻¹

u = 0.2 m

u = 20 cm

So, at 55.0 dioptres, the closet object she can see is 20 cm from her eye.

8 0
3 years ago
What happens when a temperature <br>increases.​
Liono4ka [1.6K]
The density decreases and convection causes the hot air particles to rise! BRANLIEST
5 0
3 years ago
Read 2 more answers
What happens if all the heat energy contained in a body is removed? and what will be it's temperature?Explain​
Tema [17]

Answer:

If all the heat energy contained in a body is removed and changes in its temperature is described below in detail.

Explanation:

It moves from a body at a greater temperature to a body at a cheaper temperature. All element survives as solids, liquids, or gases. The material can transfer from one station to another if warmed or cooled. When heat is provided to a body its heat increases: When a physical body, hard, liquid. When heat is provided is stopped to a body its temperature decline.

4 0
3 years ago
Other questions:
  • A man weighing 180 lbf pushes a block weighing 100 lbf along a horizontal plane. the dynamic coefficient of friction between the
    7·1 answer
  • Two laws are described below:
    12·1 answer
  • A 0.2 kg plastic cart and a 20 kg lead cart both roll without friction on a horizontal surface. Equal forces are used to push bo
    11·1 answer
  • 4) Write down the transformation of energy in torch light.<br>​
    9·1 answer
  • 1. In the circuit shown below, with each bulb holding a resistance of 100 ohms, how many amps of current are flowing? Express yo
    8·2 answers
  • Instructions:Select the correct answer from the drop-down menu. The Longmenshan Fault is in China. This fault was created when t
    8·1 answer
  • A pilot can withstand an acceleration of up to 9g, which is about 88 m/s2, before blacking out. What is the acceleration experie
    7·1 answer
  • CAN SOMEONE DO THIS TO ME ITS OK IF YOUR DRAWING IS NOT THAT COOL OR GOOD AND DONT GET A PHOTO FROM SOCIAL MEDIA
    13·1 answer
  • Chimneys don't get smoke in the house because of...?
    11·2 answers
  • What is the magnitude of the magnetic dipole moment of the bar magnet
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!