Work Done = Force x distance
Since she exerted a horizontal force of 20N over a distance of 5m, the work done is 20N x 5m which is equals to 100 joules
<h2><u>Question</u><u>:</u><u>-</u></h2>
Ryan applied a force of 10N and moved a book 30 cm in the direction of the force. How much was the work done by Ryan?
<h2><u>Answer:</u><u>-</u></h2>
<h3>Given,</h3>
=> Force applied by Ryan = 10N
=> Distance covered by the book after applying force = 30 cm
<h3>And,</h3>
30 cm = 0.3 m (distance)
<h3>So,</h3>
=> Work done = Force × Distance
=> 10 × 0.3
=> 3 Joules

Explanation:
It is given that,
Mass of person, m = 70 kg
Radius of merry go round, r = 2.9 m
The moment of inertia, 
Initial angular velocity of the platform, 
Part A,
Let
is the angular velocity when the person reaches the edge. We need to find it. It can be calculated using the conservation of angular momentum as :

Here, 


Solving the above equation, we get the value as :

Part B,
The initial rotational kinetic energy is given by :



The final rotational kinetic energy is given by :



Hence, this is the required solution.
True if you look up the question Is velocity speed in a certain direction you would’ve gotten the answer but I’m pretty sure it’s true
Answer:
A
Explanation:
its A because your comparing so comparative