Answer:
see below
Step-by-step explanation:
x⁵ - 8x⁴ + 22x³ - 26x² + 21x - 18 = 0
x = 2, x = ± i, x=3 with multiplicity 2
-----------------------------------------------------
x⁴ - 5x³ + 7x² - 5x + 6 = 0
x = 2, x=3, x = ± i
--------------------------------------------------------
<u>-1 + 4i</u> = 4 + i
i
--------------------------------------------------------
x³ - 26x² + 21x - 18 = 0
x = ± 2i, x = 3/2
--------------------------------------------------------
(1 + i) (-3 - 4i)
= 1 - 7i
--------------------------------------------------------
6.
(-5 + 2i) + (3 - 6i)
= -2 -4i
--------------------------------------------------------
7.
x⁴ + 5x² + 4 = 0
x = ± i , x = ± 2i
--------------------------------------------------------
8.
(7 - i) - (-5 + 6i)
= 12 - 7i
--------------------------------------------------------
9.
(4 - i) (4 + i)
= 17
--------------------------------------------------------
10.
(3 + 8i) (4 - 3i)
= 36 + 23i
Answer:

Step-by-step Explanation:
Given:
∆UVW,
m < U = 33°
m < V = 113°
VW = u = 29 m
Required:
Area of ∆UVW
Solution:
Find side length UV using Law of Sines

U = 33°
u = VW = 29 m
W = 180 - (33+113) = 34°
w = UV = ?

Cross multiply

Divide both sides by sin(33) to make w the subject of formula



(rounded to nearest whole number)
Find the area of ∆UVW using the formula,



(to nearest tenth).
H=2f/m+1
subtract one from both sides
h-1=2f/m
multiply m to both sides
m*h-1=2f
divide 2 both sides
mh-1/2=F
(the whole left side of the equation is divided by 2 i just cant do it on the computer)
Answer:

Step-by-step explanation:
Given



Required
Determine the coordinates of the centroid
Represent the coordinates with C.
C is calculated as follows:

Substitute values of x and y in the given equation



<em>The above is the coordinate of the centroid</em>