Answer
given,
ω₁ = 0 rev/s
ω₂ = 6 rev/s
t = 11 s
Using equation of rotational motion
The angular acceleration is
ωf - ωi = α t
11 α = 6 - 0
= 0.545 rev/s²
The angular displacement
θ₁= ωi t + (1/2) α t²
θ₁= 0 + (1/2) (0.545)(11)^2
θ₁= 33 rev
case 2
ω₁ = 6 rev/s
ω₂ = 0 rev/s
t = 14 s
Using equation of rotational motion
The angular acceleration is
ωf - ωi = α t
14 α = 0 - 6
= - 0.428 rev/s²
The angular displacement
θ₂= ωi t + (1/2) α t²
θ₂= 6 x 14 + (1/2) (-0.428)(14)^2
θ₂= 42 rev
total revolution in 25 s is equal to
θ = θ₁ + θ₂
θ = 33 + 42
θ = 75 rev
Answer:
Option (A) , (b) and (d) are correct option
Explanation:
According to Coulomb's law electric force between two charges is given by

From the relation we can say that force is directly proportional to magnitude of charges and inversely proportional to distance between them '
So if we increase the distance then force will decrease
Increase if any of the charge get larger
If force is attractive then both the charge will be of different sign and is force is repulsive then both the charges of same sign
From above conclusion we can say that (a), (b) and (d) are correct option
Melting: as mantle material rise toward the divergent plate boundary the pressure is reduced which causes melting
Answer:
λ = 0.4 x 10⁻⁶ m = 400 nm
Explanation:
The relationship between frequency, wavelength and speed of an electromagnetic wave is given as follows:

where,
c = speed of light = 3 x 10⁸ m/s
f = frequency of the light wave = 7.5 x 10¹⁴ Hz
λ = wavelength of the light = ?
Therefore,

<u>λ = 0.4 x 10⁻⁶ m = 400 nm</u>