The correct answer should be c.The kinetic energy of the water molecules decreases.
If the temperature drops that means that the molecules are coming together. If the temperature rises then it means that the molecules are spreading. If the kinetic energy falls down that means that they are slower which means that they are cooler.
An example of a negative incentive for producers is the
sharp increase in production costs. Producers are the one who manage the production
costs and even the production budget. Anything that relates the production
department is entitled to the management of production producers.
There is what we called positive and negative incentives and
both of these can affect consumers and producers. Positive incentives are those
situations which will give a certain outcome that will benefit the producers,
for example, during the peak season there will be a high demand of products, and
this gives the chance of producers to demand a higher price from the consumers,
in this situation, there will be a big chance of increase sales. A sharp increase in production costs is a
loss for the producers. If there will be
an increase in production costs, the budget will be greatly affective and even
though it is not a peak season, there’s a big chance also to increase prices
which we know, consumers are not fond of.
Answer:
B. 59 kg
Explanation:
From the graph you notice that a linear relation in indicated by the line joining the points such that the points on the line represent the data that show a correct relationship in the experiment.
This means that the point outside the line has an error .
This point is the value 59 kg that does not align with other values which are included in the graph.
Answer:
Slope = 2 m / 10 m = 1/5
For every 5 m of effort the object will be raised 1 m
W = work done on object = M g h increase in PE of object
E S = W where E is effort and S the distance thru which the effort acts
E S = M g H
E = 100 kg * 9.8 m/s^2 * 2 m / 10 m = 196 kg m / s^2 = 196 N
Check: total work = 2 * 9.8 * 100 = 1960 J
Force Needed = 1960 J / 2 m = 980 Newtons
Mechanical advantage = 980 / 196 = 5 as one would expect since the object is raised 1 m for every 5 m of force input