Answer:
are often associated with a galaxy that is colliding with another galaxy.
Explanation:
A starburst galaxy is a galaxy that undergoes very fast formation of stars. The rate at which stars are born is 100 times more than 3 solar masses per year of the Milky Way. The starburst is stage of the formation of a galaxy. After this stage is complete the stars will have used almost all the gas in it. As the star formation rate is very fast the difference between the age of the stars and the galaxy itself is very less. The star formation is triggered by mergers and tidal interactions between gas-rich galaxies.
A tsunami is caused by earthquakes in the ocean. the earthquakes make a big rumble and the big wave travels and may go on the shore and its a called a tsunami hope this helpsBrainliest??
I actually believe for the first question, it would be complete destructive interference as the amplitude and the approximate wavelength for each are the same and will completely or entirely cancel out, rather than simply decreasing or lowering the amplitude as in the bottom question.
The amplitude for the first will be 0, as the 2 waves will cancel each other out. The amplitude of the second, will be 3x, I believe, assuming the amplitude of the first is 2x and the second is 1x, in a constructive interference, I believe the amplitudes would add up.
Likewise for the bottom, I believe you would be subtracting the supposed amplitude of the first which is 2x from 1x which would be 1x.
Answer:
carbon dioxide (what you are blowing up the balloon with) is a heavy gas. so when you fill the Balloon with it, the balloon will not float. helium is a light gas and floats. gravity takes another. part in this
Answer:
1. An increase in the core temperature
2. A decrease in the core radius.
Explanation:
The sun is a Main Sequence star. A Main Sequence star is powered by fusing hydrogen into Helium within its core.
For this fusion to take place, a temperature of at least 10 million Kelvin is required, beyond this point, the fusion rate is directly related to the core temperature. If the temperature increases, the fusion rate will greatly increase.
Something similar happens if the core reduces its radius. This can happen at the end of the star's lifetime, shortly before it becomes a red giant. Once the hydrogen is depleted, the core will start to shrink because the force of gravity, and as it gets smaller, gets more compressed, and its temperature increases. The outer layers of remaining Hydrogen that were outside the core now begin to heat up, and as the core continues to shrink, the star gets hot enough to begin the fusion process again, and the fusion rate can even be higher than it was during the first phase of the star, as the star becomes a Red Giant.